
v7.1 Developer Guide

© Copyright 2011 Sage Technologies Limited, publisher of this work. All rights reserved.

No part of this documentation may be copied, photocopied, reproduced, translated, microfilmed, or otherwise duplicated on
any medium without prior written consent of Sage Technologies Limited.

Use of the software programs described herein and this documentation is subject to the End User Licence Agreement
enclosed in the software package, or accepted during system sign-up.

Sage, and the Sage logo are registered trademarks or trademarks of The Sage Group PLC. All other marks are trademarks or
registered trademarks of their respective owners.

Contents

Chapter 1: Introduction 1-1

Chapter 2: Overview 2-1

WebArchitecture 2-1

Extensibility Architecture 2-2

.NET Architecture 2-3

.NET vs Classic ASP 2-4

Security 2-5

Application Level Security 2-5

Server Level Security 2-5

Database Level Security 2-6

Customization Overview 2-6

Extending CRMwith Custom ASP Pages 2-6

Overview of Customizable Areas 2-7

DatabaseOverview 2-7

CRM Entities 2-7

Metadata 2-8

Using SQL and Triggers 2-8

Chapter 3: Getting Started 3-1

Building an ASP Page 3-1

Integrating the ASP Page Into CRM 3-4

Creating Custom Queries 3-5

Understanding "Context" and the GetContextInfo Method 3-7

Client-Side Scripting with JavaScript and DOM 3-7

Accessing User Information 3-9

Scripting in the CRM Interface 3-10

Field Level Scripting 3-10

Table Level Scripting 3-12

Chapter 4: Customization Basics 4-1

CRM Blocks Overview 4-1

Block Naming and Custom Blocks 4-1

Adding Help to Custom Pages 4-3

Developer Guide Contents – i

Contents

Step 1: Create a Custom Help Page 4-3

Step 2: Add a Help Button to your Custom Page 4-3

Limitations 4-3

Lists 4-3

How to Create a List 4-3

How to Display a List 4-4

Display a List Using an ASP Page 4-4

Display a List using Runblock and the List Name 4-5

Screens 4-5

How to Create a Screen 4-5

How to Display a Screen 4-6

Display a Screen Using Runblock and Screen Name 4-7

Display a screen using Runblock with a Custom Block 4-7

Display a screen with an ASP page 4-7

Buttons 4-8

Creating Button Groups 4-8

Adding Buttons to Button Groups 4-8

Viewing Button Groups 4-9

Restricting Access to Button Groups 4-9

CRMClassic Dashboard 4-9

Customizing The Classic Dashboard 4-9

Adding a List Block To The Classic Dashboard 4-11

Adding a Content Block To The Classic Dashboard 4-11

Adding a Chart To The Classic Dashboard 4-12

CRM Interactive Dashboard 4-13

Customizing the Interactive Dashboard 4-13

Example: Adding a Content Block to the Interactive Dashboard using the Contents field 4-
13

Example: Adding a Content Block To The Interactive Dashboard based on an ASP page 4-
15

Adding a Third-party gadget to the Interactive Dashboard 4-16

scrmPublishEvent 4-17

scrmRegisterEvent 4-17

Contents – ii Sage CRM

Contents

scrmGetGadgetProperty 4-17

scrmSetGadgetProperty 4-18

scrmSaveGadgetProperties 4-18

scrmGetSageCRMOwner 4-18

Blocks 4-18

Creating a New Block 4-18

Customizing a Block 4-19

Displaying a Block 4-19

SystemMenus 4-20

Modifying SystemMenus 4-20

Creating aMainMenu Button 4-20

Creating an AdminMenu Button 4-21

Creating an External Link on theMainMenu 4-21

Tabs 4-24

Creating a New TabGroup 4-24

Editing theMainMenu TabGroup 4-25

Adding a Tab that Links to an ASP Page 4-25

Restricting Access to the Tab 4-26

Tab Actions 4-27

Chapter 5: Database Customization 5-1

Introduction to Database Customization 5-1

Creating a New Table 5-1

Creating a New Database Connection 5-3

Creating a New Table Connection 5-4

Example: Creating a Tab to Display a List of Invoices 5-4

Example: Displaying an Individual Invoice from a List 5-6

Example: Adding New Data Entry andMaintenance Screens 5-7

Table and Entity Scripts and Functions 5-12

Creating a Table Level Script 5-14

Detached Table Level Scripts 5-14

Creating an Entity Level Script 5-14

Example: UpdateRecord in an Entity Level Script 5-15

Example: InsertRecord 5-16

Developer Guide Contents – iii

Contents

Example: PostInsertRecord 5-16

Example: UpdateRecord 5-16

Example: DeleteRecord 5-17

Advanced CustomizationWizard 5-17

Creating a New Main Entity 5-17

Advanced CustomizationWizard Parameters 5-18

Enabling Company and Person Deduplication 5-21

Custom Files andMetadata 5-22

Making Custom Entities Available for Reassignment 5-24

Customizing a New Main Entity 5-25

Advanced CustomizationWizard Example 5-26

Chapter 6: Component Manager 6-1

Introduction to Component Manager 6-1

Recording 6-1

Scripting 6-1

Installing 6-1

What Types of Customizations can be Recorded? 6-1

Recording Customizations 6-2

The Component Details Screen 6-2

Starting Component Manager 6-3

Stopping Component Manager 6-3

Adding Customizations to an Existing Component 6-3

Changing the Current Component 6-4

Scripting Customizations 6-4

Previewing Changes 6-4

Scripting Changes 6-4

ScriptingMulti-Stage Customizations 6-5

ScriptingWorkflows 6-6

Saving a Component 6-7

Installing a Component 6-7

Component Manager Log File 6-8

Advanced Component Options 6-9

How to Generate a Component Script using Advanced Component Options 6-9

Contents – iv Sage CRM

Contents

How to Create a New Component Using Advanced Component Options 6-10

Modifying Component Manager Scripts 6-11

Error Handling 6-12

Referential Integrity 6-12

Script Parameters 6-13

Phone and E-mail Changes 6-14

Component Manager Methods 6-14

Component Manager Scripting Examples 6-36

Chapter 7: Graphics and Charts 7-1

Introduction 7-1

Charts Overview 7-1

Fusions Charts System Parameters 7-2

Pie Chart Only Effects 7-2

Special Effects For Charts 7-3

Using External Data for Charts 7-3

Chart Examples 7-4

Example: Adding a New Chart 7-4

Example: Organization Chart 7-6

Graphics Overview 7-8

Graphics Formats 7-8

Graphics Performance Tips 7-9

External Images 7-10

Graphics Examples 7-10

Example: Adding a New Graphic 7-10

Example: Pipeline 7-11

Graphic Effects Basics 7-14

Change Image Color 7-14

Clear An Image 7-14

Display Errors 7-14

Drawing Functions 7-14

Merging 7-16

Special Effects 7-17

Animation 7-17

Developer Guide Contents – v

Contents

Adding Frames 7-17

Delay 7-17

Loops 7-17

ASP Example 7-18

Chapter 8: ASP Object Reference 8-1

Introduction to the ASP Object Reference 8-2

Quick Reference Table 8-3

Examples 8-7

Sample CRMGridColBlock ASP page 8-7

Sample CRMListBlock ASP page 8-7

Using the New Workflow Properties in an ASP page 8-8

AddressList Object 8-9

Methods 8-9

Properties 8-10

Attachment Object 8-10

Methods 8-10

Properties 8-11

AttachmentList Object 8-11

Properties 8-11

Email Object 8-12

Methods 8-12

Properties 8-13

MailAddress Object 8-15

Properties 8-15

MsgHandler Object 8-15

Methods 8-16

Properties 8-16

CRMObject 8-17

Methods 8-17

Properties 8-22

CRMBaseObject 8-22

Methods 8-23

Properties 8-27

Contents – vi Sage CRM

Contents

CRMBlock Object 8-27

Methods 8-28

Properties 8-29

CRMChartGraphicBlock Object 8-33

Methods 8-33

Properties 8-35

CRMContainerBlock Object 8-36

Methods 8-37

Properties 8-39

CRMContentBlock Object 8-43

Properties 8-43

CRMEntryBlock Object 8-43

Methods 8-44

Properties 8-44

CRMEntryGroupBlock Object 8-55

Methods 8-56

Properties 8-57

CRMFileBlock Object 8-57

Properties 8-58

CRMGraphicBlock Object 8-59

Methods 8-59

Properties 8-68

CRMGridColBlock Object 8-69

Properties 8-70

CRMListBlock Object 8-72

Methods 8-73

Properties 8-75

CRMMarqueeBlock Object 8-77

Properties 8-77

CRMMessageBlock Object 8-79

Properties 8-80

CRMOrgGraphicBlock Object 8-82

Methods 8-82

Developer Guide Contents – vii

Contents

CRMPipelineGraphicBlock Object 8-82

Methods 8-83

Properties 8-85

CRMQuery Object 8-85

Methods 8-86

Properties 8-87

CRMRecord Object 8-89

Methods 8-89

Properties 8-92

CRMSelfService Object 8-95

Self ServiceMethod and Property Differences 8-95

Note on Instantiating the CRMSelfService Object 8-96

Methods 8-97

Properties 8-98

CRMTargetListField Object 8-99

Properties 8-99

CRMTargetLists Object 8-99

Methods 8-100

Properties 8-100

Example: Creating and Saving a Target List 8-102

Example: Retrieving a Target List 8-103

CRMTargetListFields Object 8-103

Methods 8-104

Properties 8-104

Chapter 9: Web Services 9-1

Introduction toWeb Services 9-1

Setting UpCRMWeb Services 9-2

Objects and Functions Overview 9-5

List of Web Services Functions 9-5

List of Web Services Objects 9-7

The CRMRecordTypeObject 9-10

Selection Fields inWeb Services 9-11

Introduction toWeb Services Examples 9-13

Contents – viii Sage CRM

Contents

Sample SOAP Requests 9-15

Chapter 10: SData Read-only 10-1

Introduction to SData 10-1

Overview of SData within Sage CRM 10-1

SData Prerequisites 10-2

Switching on SData 10-2

Constructing SData URLs 10-3

SData URL Examples 10-3

SData Authentication 10-3

Chapter 11: .NET 11-1

Extending Sage CRMWith .NET 11-1

Sage CRM .NET API and ASP.NET 11-2

Programming Languages 11-2

Component Manager 11-2

Connection Pool 11-2

Using .NET Application Extensions 11-2

The CustomDotNet Folder 11-2

Changing the Build Location of the DLL 11-2

Copying the DLL file to the CustomDotNet Folder 11-3

Calling the .NET Application Extension 11-3

Calling the .NET Application Extension From Tabs/Menus 11-3

Calling the .NET Application Extension From List Block Hyperlinks 11-4

Calling the .NET Application Extension FromWithin Another Custom .NET Application 11-
4

Calling the .NET Application Extension From ASP Pages 11-4

.NET API Debugging 11-4

Method 1: Change IIS Security 11-5

Method 2: Use COM+ 11-5

Troubleshooting 11-6

.NET API Class Library Documentation 11-6

Sage Namespace 11-6

Sage.CRM.WebObject Namespace 11-7

Sage.CRM.Controls Namespace 11-7

Developer Guide Contents – ix

Contents

Sage.CRM.Data Namespace 11-7

Sage.CRM.Utils Namespace 11-7

Sage.CRM.Blocks Namespace 11-8

Sage.CRM.HTMLNamespace 11-8

Sage.CRM.UI Namespace 11-8

Installing the .NET SDK 11-8

Pre-Installation Checklist 11-8

Installing the SDK and .NET Templates 11-9

Installation Troubleshooting 11-9

Manually registering the DLL 11-9

Manual Installation of the CRM Visual Studio .NET Templates 11-10

Uninstalling the .NET SDK 11-10

.NET Examples 11-10

Creating a Simple Sage CRM Interface 11-11

Creating aMore Complex CRM Interface 11-12

Creating a Project Based on a Sage CRM Template 11-16

CRM Basic Template 11-16

CRM Entity Template 11-17

Index i

Contents – x Sage CRM

Chapter 1: Introduction

This Developer Guide is for CRM Implementers and Programmers. We assume that you are a
confident CRM user and are fully conversant with the topics covered in the System Administrator
Guide.

We also assume that you are fully conversant in the areas of:

l SQL views, tables, databases, data relationships, and normalization.
l Programming concepts.
l Internet technologies, specifically Active Server Pages (ASPs).

Sage CRM is extensible using the Extensibility Module (EM). EM technology is also known as CRM
Blocks. As well as the ability to extend your own system, EM enables you to create custom pages
which you can add to other CRM systems using the Component Manager feature—enabling you to
extend your customers’ CRM systems.
The focus of this guide is on extending your Sage CRM system using CRM Blocks, ASP pages and
the .NET SDK. The Sage CRM system can also be extended usingWeb Services (page 9-1).
Please note that while this guide refers to Sage CRM, CRM, or the CRM system throughout, regional
products may use different brand names.
Also note that CRM Blocks used to be known as eWare Blocks. Existing code that refers to eWare
Blocks or the eWare object will still work, and CRM and eWare are interchangeable (except in the
context of CRMSelfService). Please see the ASP Object Reference for more information.

Developer Guide 1-1

Chapter 2: Overview

In this chapter you will learn how to:

l Get an overview of theWeb Architecture.
l Get an overview of the Extensibility Architecture.
l Get an overview of the .NET Architecture.
l Compare .NET and ASP as customizationmethods.
l Discuss Security in Sage CRM.
l Get an overview of customization options.
l Discuss database properties.

Web Architecture
CRM is based on a standardWeb applications structure. The application server sits into an existing
intranet environment.

Web Browser. A standard browser such as Internet Explorer. As CRM is a thin-client configuration,
a browser is all that is required on each user's computer.
Firewall (optional). Youmay have a firewall installed between your network and the Internet for
network security. This is not a required component for CRM.
Web Server. The CRM Application Server works with Microsoft Internet Information Server. Please
refer to the latest Product Support Matrix for supported versions.

WebArchitecture

Developer Guide 2-1

http://community.sagecrm.com/user_community/m/sage_crm_v71/default.aspx
http://community.sagecrm.com/user_community/m/sage_crm_v71/default.aspx
http://community.sagecrm.com/user_community/m/sage_crm_v71/default.aspx

Chapter 2

CRM Application Server. The CRM Application Server comprises a number of subsystems, which
work together to coordinate the delivery of information and functionality to clients. These include
objects for checking user security, maintaining user persistence, getting information from the
database, generatingWeb pages from data, and processing business rules and logic. This guide
describes each of these objects and outlines their properties andmethods.
Database. CRM has native support for Microsoft SQL Server andOracle. The database is used to
store corporate data andmetadata, which define the system customization, security, and business
rules.
E-mail Server. The E-mail Management functionality enables the Application Server to be integrated
with the E-mail server to automate the sending of e-mails and SMS messages as part of the CRM
implementation. The CRMEmail object and the CRMMsgHandler object and it's child objects are
used to customize the E-mail Management functionality. Note that the CRMMessageBlock object
can also be used to sendmessages in SMS and e-mail format.
As CRM is designed for amulti-tier environment, you can have all of the above components on the
same or separatemachines.

Note : IIS and the CRMDLL have to be on the same server, so as a general rule IIS and
CRM are installed on the same server. Wewould recommend that the database is
installed be on a dedicated database server.

DLL. The CRMDLL (Dynamic Link Library) runs on aWindows Server with Microsoft Internet
Information Server (IIS)Web Server software. The IIS Web Server communicates with CRM through
the CRMDLL and Internet Server Application Programming Interface (ISAPI) technologies.
Apache Tomcat Redirector. The redirector in v7.1 is an ASP.NET Reverse Proxy, which is a 32-
bit/64-bit ASP.NET web application configured in standard Apache format. This ASP.NET rewriter
uses the HTTP protocol instead of binary socket and can be accessed directly in a browser, so you
can easily check whether Tomcat is working. Please refer to the Installation and UpgradeGuide and
the latest articles on theSage CRM Ecosystem for more information.

Extensibility Architecture
The Extensibility Module ('EM') provides users with a range of powerful functions that allow them to
customize and extend the existing CRM product.
These functions aremade available through the CRM ActiveX object, which is made up of a number
of CRMmethods and properties. The CRM object components have a variety of functions, which
render HTML and display Screen and List objects-previously defined in the CRM system itself.
There are also a number of database connectivity options available. These include searching,
inserting, updating, and deleting data to and from CRM data, as well as data from external tables and
databases.

2-2 Sage CRM

Chapter 2: Overview

ExtensibilityArchitecture

You can establish if the Extensibility Module is present in your CRM installation as
follows: Select Administration |Customization |Company.
If you have the Extensibility Module, you will see Blocks and TableScripts tabs:

.NET Architecture
As the core of the Sage CRM solution is represented by an ActiveX component, Sage has leveraged
Microsoft’s Interop technology to expose this existing COM component to managed code (that is
code executed by Microsoft's .NET Framework Common Language Runtime).
The process of exposing COM components to the .NET Framework can be challenging, involving
steps such as converting the coclasses and interfaces contained in a COM type library to metadata
and deploying Interop applications as strong-named, signed assemblies in the global assembly
cache.
The Sage CRM SDK for .NET handles these low-level implementation details by providing a
redistributable package that installs the .NET component onto your system andmakes it readily
available within the Visual Studio environment.
The diagram below shows this architecture.

Developer Guide 2-3

Chapter 2

.NET Architecture

1. CustomDotNetDll action calls Application extension.
2. CustomDotNetDll action uses COM interop to trigger behaviour in CRM .NET Component.

l Passes CRM Application Extension DLL name and session information.
l Calls CRM Application Extension.

3. CRM Application Extension processes data and generates and returns HTML.
The Sage CRM .NET API conforms to the .NET 2.0 Framework. It provides a type library that
exposes the Sage CRM objects, properties, andmethods. Through its core libraries the Sage CRM
.NET Component manages both data access and web interface generation. Projects developed
using the Sage CRM .NET Component will be compiled into a dll and called directly from within Sage
CRM. By using Sage CRMmeta data Application Extensions constructed using the Sage CRM
.NET API will look, feel and perform exactly like core system pages.

Reference to the Sage CRM .NET component from within ASP.NET projects is not
supported.

Any programming language that conforms with the .NET 2.0 Framework can be used for the
development of Sage CRM Application Extensions (e.g. J#, C# VB.NET etc).

.NET vs Classic ASP
Before the release of Sage .NET SDK, themainmethod for developers who wished to add custom
pages to the CRM environment was through the creation of ASP pages. As these pages were coded
in simple text editors—typically Notepad orWordPad—developers could not use features offered by
IDEs, such as IntelliSense (providing drop-down lists of available objects, properties, andmethods),
syntax checking, and debugging tools. The absence of IntelliSense, in particular, usually required
developers accessing functionality provided by the Sage CRM API to refer repeatedly to the relevant
documentation.
In addition, the absence of meaningful syntax checking and debugging tools in text editors meant that
developers could not gauge the correctness of their ASP coding until the page was upload to the Sage

2-4 Sage CRM

Chapter 2: Overview

CRM environment and running in the context of new tab. Developers reload pages in the Sage CRM’s
Custom Pages folder to check whether their ASP code is working as intended.
The simplicity of the ASP/Sage CRM API/Text Editor combinationmakes it appropriate to solutions
that require simple coding implementations and rapid deployment. However, given that coding
separate ASP pages is not conducive to best programming practice (specifically, OOP principles and
associated practices, such as refactoring) and that creatingmulti-file projects can demandmore
advanced project tools, developers should appreciate amore sophisticated solution for certain
customization tasks.
By allowing developers to access the Sage CRM through the .NET framework, several of the issues
associated with earlier customization solutions are comprehensively addressed.
Instead of coding in a basic text editor, developers can now use the suite of features provided by
Microsoft’s Visual Studio. With the Sage CRM .NET component properly referenced by the
application, Visual Studio treats objects from the Sage CRM API in the sameway as any other
initialized C# object. This means when, for example, you are using a CRM object and are calling one
of its methods, the IntelliSense prompts you with a list of the object’s properties andmethods when
you type the “.” operator after the object name.
Also, rather than coding in a scripting language that initializes and uses both ASP and Sage CRM API
objects, the .NET framework enables developers to write in C# or Visual Basic.NET, highly object-
oriented languages that can draw on the resources of .NET’s class library.
In addition, whereas the source code in ASP pages can be accessed by users selecting the View–
Source option from the browser menu, .NET applications are compiled into binary DLLs before
deployment. Preventing access to source codemeans improved security and better protection of
intellectual property.

Security
CRM is modelled on an n-tier architecture. Each tier includes a number of security mechanisms.

Application Level Security
Every user is assigned a valid username and password. The only person allowed to add or remove
users is the System Administrator. Within the system, each user can be assigned different levels of
access security depending on their job role. When IIS uses SSL encryption, the system is aware of
this, and when the client attaches any documents to a form in the system, it sends it through the
encrypted sessions.

l User Authentication/Password Setup. A user requires a Logon ID and password to access
the system. The user's password is encrypted both within the system and in the database for
maximum security.

l Tab and Team Restrictions. Access to individual tabs within CRM can be restricted by the
System Administrator, as can the level of access that each user is allocated. The System
Administrator can also assign users to teams, which further categorizes and restricts levels of
access to individual tabs.

l Security Profiles and Territories. The System Administrator canmanage security access
rights across the organization by setting up Territory Profiles and, if required, security
Territories. A Profile is a way of grouping users together when defining access rights (View,
Update, Insert, Delete). A Territory is a way of further dividing user rights by location or other
criteria. For example, youmay want users in the Europe territory to view all Opportunities
within the USA territory but not to be able to update them. Complex inter-territory security
rights and exception handling are also catered for using Territory Policies. Profiles and
Territories are set up from Administration | Users | Security, please refer to the System
Administrator Guide for more information.

Server Level Security
You can use all three or a combination of the followingmethods to secure the CRM server:

Developer Guide 2-5

Chapter 2

l NT Challenge/Response. This allows access to clients with a valid domain login.
l SSL Encryption. This secures your data sessions with client users.
l A Firewall. This restricts unauthorized access from outside the network and allow only

authorized users through.

Database Level Security
CRM users do not have direct access to the database. The CRMDLL accesses the database by
using a predefined login. When a user requests data, the CRMDLL connects to the database using
Microsoft Data Access Components (MDAC) and retrieves the required data. For extra security, the
CRMDLL can be configured to access the database using a login with limited access.

Customization Overview
Sage CRM can be customized in a number of different ways:

l By development of custom ASP pages which can perform awide variety of functions including
for example displaying data entry screens or search and list pages.

l By using the system interface to add fields, tables, tabs etc (see table below).
l Through use of the .NET SDK.

Extending CRMwith Custom ASP Pages
The ability to add a custom ASP page to CRM and display that page on a user-defined tab allows
developers to extend andmodify system functionality. As well as allowing developers to leverage
their expertise in technologies such as Active Server Pages (ASP), JavaScript, andW3C's
Document Object Model (DOM), the Extensibility Module (EM) provides an extensive library of
existing functionality represented by the classes, methods, and properties provided by the CRM
Block architecture.
The Block architecture serves as a highly accessible and flexible SDK (Software Development Kit)
by enabling the developer to use the CRMObject, which is initialized by standard CRM include files
referenced at the top of a custom file. As well as providing a range of useful functions andmethods
itself, the CRMObject allows you in turn to initialize further blocks that build up the screen interface,
generate lists, manipulate database records, andmodify scripts.
As CRM blocks reside on the install server, code using the CRM SDK typically also has to run on the
server before the compiled page is dispatched to the client. ASP is the technology of choice for
server-side coding, as it is supported by Internet Information Services (IIS) and provides six built-in
objects that ease the creation of dynamic web pages.
However, after the page has been downloaded from the server and displayed within the CRM
system, it is possible to handle data and respond to user-generated events using client-side
JavaScript and the DOM.
Server-side and client-side scripts can coexist in the same ASP file, with each approach playing to
the strengths of that particular technology. Server-side ASP code can be used to draw on the prebuilt
functionality of the CRM Block architecture. In contrast, client-side JavaScript offers immediate
responses to user actions and enables you to access the DOM to navigate the screen interface.

2-6 Sage CRM

Chapter 2: Overview

Overview of Customizable Areas
Aside from integrating ASP pages into CRM, you can also customize the following areas by using the
system interface to enter scripts and change settings:

Customizable
Area

Without EM Additional
Customization with EM

Fields Create new fields and customize existing ones.

Screens Customize existing screens that are in the CRM
database. Add and remove fields that were
created in the system.

Add new screens.

Lists Customize existing lists that are in the CRM
database.

Add new lists.

Tabs Add new tabs to tab groups that are in the CRM
database. Customizemainmenu buttons.

Add new tab groups.

Link tabs to custom
files or URLs.

Link tabs to runblock
and runtabgroup
functionality.

Views Add new views. Change some existing views.

Blocks Add Blocks.

Table
Scripts

Add Table and Entity
Scripts.

Tables and
Databases*

Connect to a new
table.

Connect to a new
database.

Create a new table.

Button
Groups*

Add new button
groups.

Component
Manager**

Upload a component. Record and script
components.

* Tables And Databases and Button Groups are customized from Administration | Advanced
Customization.
** Component Manager is accessed from Administration | Customization.

Database Overview

CRM Entities
In Sage CRM, an "Entity" is a representation of a real world entity such as a Company, a Person, or a
Sales Opportunity. The entity may have relationships with other Entities. For example, a Company
can havemany People working for it. Each of these Entities may then have other entities in

Developer Guide 2-7

Chapter 2

relationships with them, for example People can have Communications and Sales Opportunities
associated with them.
CRM entities aremade up of information from several different tables linked in a logical way. For
example, the Company entity is made up of information from the Company, Address, Phone, and
Person tables.
CRM includes the following primary Entities:

l Company
l Case
l Opportunity
l Person
l Communication
l Leads
l Quotes
l Orders

Unlike database entities, CRM entities are several tables linked together in a logical
business grouping.

Metadata
In CRM, Metadata encompasses all of the information that is required tomake sense of the stored
business data. For example, there aremetadata tables that contain field captions, or convert code
values from drop-down fields into meaningful information.
The system database contains CRMmetadata tables. These are prefixed with the word 'custom'.

Using SQL and Triggers
You can use the CRMQuery object's SQLmethod to include SQL statements in an ASP page.
You can also use SQL conditional clauses within the system inAdministration |Customization |
<Entity> | Tabs. For more information please refer to the System Administrator Guide.
CRM also includes Table and Entity level scripting functionality that you can include as an alternative
to SQL triggers.

2-8 Sage CRM

Chapter 3: Getting Started

In this chapter you will learn how to:

l Build an ASP page.
l Integrate an ASP page into CRM.
l Create custom queries.
l Understand "Context" and the GetContextInfo method.
l Get an overview of client-side scripting with JavaScript and DOM.
l Access user information.
l Enter script in the CRM interface.
l Get an overview of field-level scripting.
l Get an overview of table-level scripting.

Building an ASP Page
Sage CRM ASP pages leverage the properties andmethods of the CRM object to connect to the
system database and produce formatted output to the web browser. Standard ASP scripting
conventions are observed.
To illustrate the creation of a simple ASP page, we will create a custom search page which will allow
the user to search contacts in the CRM database (the Person Entity) and display the results in a list.
The first step in creating a page is to use an include statement to ensure that the CRM object is
instantiated:

<!-- #include file ="sagecrm.js"-->

Note that this Developer Help assumes that the CRM object will be instantiated as
"CRM". In some older versions of the include file, the object is instantiated as "CRM"' or
"eWare". If you are using an older version, simply use "eWare" when referring to the
object, or modify the include file to set: CRM = eWare;

Aside from instantiating and initializing the CRMObject, the include file also:

l References the Sage CRMCSS Stylesheet
l Defines constants
l Checks for errors

The include file referenced in your file depends on the language you're scripting in:
SAGECRM.JS - referenced in JavaScript-based ASP pages. This file sets the default
language to JavaScript.
SAGECRMNOLANG.JS - this file does not set the default language.
SAGECRM.VBS - referenced in Visual Basic-based ASP pages. This sets the default
language to VB Script.
eWare.JS - for backward compatibility with pre 5.6 versions of CRM.
ACCPACCRM.JS - for backward compatibility with pre 7.0 versions of CRM.
ACCPACCRMNOLANG.JS - for backward compatibility with pre 7.0 versions of CRM.
ACCPACCRM.VBS - for backward compatibility with pre 7.0 versions of CRM.

Developer Guide 3-1

Chapter 3

After the include file, youmust open the ASP delimiters <%%> to tell the ISAPI.DLL that the
contained ASP code will execute on the server, and then call the CRM object methods required for
your page.
In the example below, we call the CRM object's GetBlock method to initialize one of the child blocks
that implement core CRM functionality. This method is likely to feature at the start of most of your
custom ASP pages, and often several more times throughout, as you build up a CRM screen using
several components.

<%

// get an empty container block

var SearchContainer = CRM.GetBlock('Container');

In this example, the GetBlock's parameter is "Container" which indicates the CRMContainerBlock
object. This object is used to group and ensure proper display of the output from the other objects on
the page. The container block also provides default onscreen elements, such as buttons, that make it
easier to format and support custom layouts.
The returned CRMContainerBlock object has been assigned the variable name SearchContainer.
Aside from default buttons, this container screen is empty. Tomake it useful, we now need to add
some blocks.

var SearchBlock = CRM.GetBlock('PersonSearchBox');

Weagain use the CRM objects GetBlock method to retrieve a block and its associated functionality.
In this case, we have specifiedPersonSearchBox. PersonSearchBox is an instance of the
CRMEntryGroupBlock, and you can see (andmodify) the contents of PersonSearchBox by going to:
Administration | Customization | Person | Screens | Person Search Screen
Other standard screens based on CRMEntryGroupBlock include CompanySearchBox,
PersonEntryBox, CaseDetailBox and other entity search and entry screens.
We now add SearchBlock (our instance of the PersonSearchBox) to the screen container with the
statement:

SearchContainer.AddBlock(SearchBlock);

By default, the container object will supply a 'Save' button. However in this case we are going to
create a Search page, so wewill change the attributes of the default button with the following code:

//Change the label and image on the default button

SearchContainer.ButtonTitle='Search';

SearchContainer.ButtonImage='Search.Gif';

The next section of code specifies what happens when the user submits a search. To determine
whether we should display a search results grid, wemust check theMode property of the CRM
object. CRM.Mode=Save is true when we have just submitted a form to either save an entry or
perform a search.Save is a constant defined in the include file (see above).

//Show results of search

if (CRM.Mode == Save)

{

var resultsBlock = CRM.GetBlock('PersonGrid');

resultsBlock.ArgObj = SearchBlock;

SearchContainer.AddBlock(resultsBlock);

}

Other possible values for theMode property areView (the screen is in read-only state) and Edit (the
screen is in an editable state).

3-2 Sage CRM

Chapter 3: Getting Started

In this case, we have specified what action to take after the search has been submitted. Again, the
CRM.GetBlock method has been called, here to return a PersonGrid block. PersonGrid is and
instance of the CRMListBlock object. The fields displayed in this list can be viewed at:
Administration | Customization | Person | Lists | PersonGrid
The returned PersonGrid block has been assigned the variable name resultsBlock. Next, the
CRMBlock property, ArgObj, which is a base property implemented by all subclasses (such as the
PersonGrid block in this case) is used to pass the SearchBlock as a parameter for populating the list.
In other words, we have specified that the list resultsBlock is to take the search screen SearchBlock
as a parameter, and therefore the contents of the list generated by resultsBlock will be determined by
the values of the fields on the search screen SearchBlock.
Finally, we used the AddBlock method of the container object to add the resultsBlock object.
Next wemust set the CRM.Mode property. As this is a search form (rather than a data-entry form),
we need to ensure that the page is not displayed in read-only mode.

if (!Defined(Request.Form))

{

// first time - display mode

CRM.Mode = Edit;

}

else

{

// mode is always Save

CRM.Mode = Save;

}

Finally we call SearchContainer.Execute which returns the HTML code for the container we have
created. This HTML code is passed as a parameter to the CRM.AddContent method.
Multiple pieces of content can be stored to the AddContent method. Finally, all of the content is
rendered to the browser by calling CRM.GetPage(). CRM.GetPage() produces properly formatted
HTML and incorporates the tabs at the top of the page. We can store this HTML text output into a
variable, sHTML, and then use Response.Write() to send this to the browser.

CRM.AddContent(SearchContainer.Execute());

var sHTML = CRM.GetPage();

Response.Write(sHTML);

The AddContent andGetPagemethods will ensure that the correct format is sent to the browser (i.e.
it will be rendered properly if the browser client is amobile device).

Note: If a coaching caption is associated with the returned page, and the coaching
caption settings are enabled, the displayed ASP page will feature coaching text.
However, it is not possible at present to specify coaching text via the API.

Here is the complete code for the page:

<!-- #include file ="sagecrm.js"-->

<%

// get an empty container block

var SearchContainer = CRM.GetBlock('Container');

// add the Person Search Box

var SearchBlock = CRM.GetBlock('PersonSearchBox');

SearchContainer.AddBlock(SearchBlock);

//Change the label and image on the default button

SearchContainer.ButtonTitle='Search';

SearchContainer.ButtonImage='Search.Gif';

//if button has been pressed then add the list block to show

Developer Guide 3-3

Chapter 3

//results of search

if (CRM.Mode == 2)

{

var resultsBlock = CRM.GetBlock('PersonGrid');

resultsBlock.ArgObj = SearchBlock;

SearchContainer.AddBlock(resultsBlock);

}

if (!Defined(Request.Form))

{

// first time - display mode

CRM.Mode = Edit;

}

else

{

// mode is always Save

CRM.Mode = Save;

}

CRM.AddContent(SearchContainer.Execute());

var sHTML = CRM.GetPage();

Response.Write(sHTML);

Integrating the ASP Page Into CRM
Once you've finished writing the ASP page, making it accessible within CRM is a two-stage process:

l Placing the ASP file in the Custom Pages folder.
l Specifying details of the ASP file in the Administration section of Sage CRM.

Placing the ASP file in the Custom Pages folder:

l Copy the saved ASP file into the Custom Pages folder. In a typical install, the path namewill
be ...\Program Files\CRM\(Your Install Name)\WWWRoot\CustomPages\

Enabling a CRM tab to display the ASP file:

1. Select Administration |Customization. A list of primary entities that can be customized are
displayed. Secondary entities available for customization can be accessed from the drop-
down list at the bottom of the screen.

2. Select theCompany entity. A sequence of tabs indicating customizable areas of the selected
entity is displayed.

3. Select the Tabs tab.
4. In the table displayed, click theCustomize icon beside the hyperlink for Company. The

Customize tabs page, which allows you to customize existing tabs or create new ones, is
displayed.

5. In this case, we want to add a new tab to display the ASP page we've created. So in the
Properties panel, enter the nameSearchbox in the Caption field and click on theAdd button.
A tab namedSearchbox has been added to the list under the heading Desktop HTML Tab
Group Contents. You can adjust this new tab's position in the tab sequence by using the up
and down arrows beside the list.

6. Next, we need to specify that the new tab displays the file copied to the Custom Pages folder.
In the Actions drop-down field, select theCustomfile option. This indicates to the system that
the tab is using a file from the Custom Pages folder.

7. Next, you type your file name (i.e.MySearchBox.asp) into the Custom File field.
8. Click on theUpdate button to add these details to Searchbox tab.
9. Click on theSave button to confirm the changes.

3-4 Sage CRM

Chapter 3: Getting Started

To view the ASP page within the tab, click into any company details screen. A new tab, SearchBox,
is now visible.

Creating Custom Queries
Creating a RecordSet using CreateQueryObj
The CRM API allows easy access to the database for selecting and updating data. The
CreateQueryObj method can return a record set that can be viewed andmanipulated in the sameway
as, for example, an ADO record set.
Here is an example of an ASP page that uses the CRMQuery object to present the user with a filtered
list of companies. In this case wewill show only those companies from the software sector that are
ranked as prospects.

<!-- #include file ="sagecrm.js"-->

<%

Query= CRM.CreateQueryObj("SELECT * FROM Company WHERE Comp_Deleted IS NULL AND

Comp_Type = 'Prospect'

AND Comp_Sector = 'Finance'");

Query.SelectSql();

While (!Query.eof)

{

CRM.AddContent(Query.FieldValue("comp_name")+' ');

CRM.AddContent(Query.FieldValue("comp_address")+'
');

Query.NextRecord();

}

Response.Write(CRM.GetPage());

%>

The CRM object's CreateQueryObj method returns a CRMQuery object by specifying a valid SQL
statement as a parameter. The default database is used in this example, but it is possible to specify
another database by adding a second parameter to the CreateQueryObj method call.
You can expand the scope of your query using such relational database features as Joins and Views.
You can also examine, or copy if you wish, system and custom views either by going to
Administration | Customization | <EntityName> | Views or scanning the list of Views in a database
management tool such as SQL Server EnterpriseManager.
In this case the returned query object is assigned the nameQuery. TheQuery.SelectSql method
executes the SELECT query. It is also possible to use the Query.ExeqSql method to run queries that
do not return records, such as DELETE, UPDATE, and INSERT.
As well as encapsulating the components to access and update the database, the Query object also
stores the returned data.
In this example we use a Javascript WHILE statement to iterate through the returned records until an
end-of-file marker is found. Within the loop, the values stored for each company's name and e-mail
address are retrieved using the Query object's FieldValue property.
We then use the AddContent method to build up a block of HTML that will be displayed when wewrite
the output of the CRM.GetPagemethod to our ASP page using the Javascript Response.Write.

Using a ListBlock to provide better format
Although this query generates a filtered list containing information the developer specified, it would be
better to have data formatted in the sameway as the CRM interface.
This can easily be done by using the CRMListBlock Object, which can be initialized by supplying the
CRM.GetBlock method with the appropriate parameter. In the code below we create the new object,
NewList, by calling CRM.GetBlock("list").

Please refer to Developer Help files for code sample

Developer Guide 3-5

Chapter 3

In the example above, the SELECT query for retrieving a filtered list of company records remains
unchanged from that used by a CRMQuery block. However, in this case, the query string is being
passed to the CRMListBlock object's SelectSql property. As always, the CRMListBlock, assigned
the nameNewList, was obtained using the CRM.GetBlock method.
We can then specify which columns to display by using the AddGridCol method. In this case, we're
going to show values relating to the company name and company e-mail address.
You can pass only field names that are returned by the SQL query. You can also enter optional
addition parameters for this method that specify the position of the column in the tabular list and
whether the column contents are ordered.
The Executemethod returns HTML to display the selected columns in a properly formatted list.

Note: The list object has abstracted the process of looping through the available records,
so aWHILE statement testing an EOFmarker is not needed.

The returned list is passed to the CRM AddContent method. Again, CRM.GetPage is used in
conjunction with Response.Write to send the output onto the client's screen.

Using the CreateRecord method for easier Recordset manipulation
The ability to construct SQL strings and pass them to CRM objects enables developers to apply
relational database concepts to the presentation andmanipulation of CRM data. However,
developers not familiar with SQL or requiring amore abstract approach to handling data can use the
CRMRecord Object which can be used to create an updateable record object.

<!-- #include file = "sagecrm.js"-->

<%

Comp = CRM.CreateRecord('company');

Comp.item('comp_Name') = '4D Communications International';

Comp.item('comp_emailaddress') = 'www.4DCommInter';

Comp.SaveChanges();

block=CRM.GetBlock("companygrid");

CRM.AddContent(block.execute(''));

Response.Write(CRM.GetPage());

%>

In this example, the CRM object's CreateRecordmethod is called, with the company table specified
as an argument.

Rather than having to use a SQL INSERT statement, new values can now be assigned to fields using
the following syntax:

Comp.item ('fieldname') = 'strvalue';

This is similar to opening an ADO updateable recordset. For example, Comp.item ('comp_Name') =
'4D Communications International' is equivalent to the SQL statement: "INSERT INTOCompany
(Comp_Name) Values ('4D Communications').

Note: You are not required to specify the item property (because it is the default property
for this object), so
Comp.item('comp_Name') = '4D Communications International' and Comp('comp_
Name') = '4D Communications International' are treated in the sameway.

The SaveChanges methodmust then be called to updates the database with the insertions.
Finally we can view the updated records by selecting an appropriate block to display company
details. In the above example, we have used a company grid.

3-6 Sage CRM

Chapter 3: Getting Started

Understanding "Context" and the GetContextInfo Method
In CRM development terms, 'Context' refers to information about the current situation of the user
within the software interface. As a very simple example, if the user is looking at the Company
summary screen, then he is said to be in the context of that company.
This means that it will be possible for the developer to easily access contextual information, such as
data from the Company and Person tables, that relate directly to what the user is looking at. Data
from the User table concerning the current user is also available within the context framework.
TheGetContextInfo method is used to access information about the current context. In the sample
below, the GetContextInfo method and the CaseList block are used to retrieve and display the cases
in progress associated with the company currently being viewed by the user:

<!-- #include file = "sagecrm.js"-->

<%

ThisCompanyId = CRM.GetContextInfo('Company','Comp_CompanyId');

SearchSql = "Case_PrimaryCompanyId="+ ThisCompanyId;

SearchSql += " and Case_Status='In Progress'";

CaseListBlock = CRM.GetBlock('CaseList');

CRM.AddContent(CaseListBlock.Execute(SearchSql));

Response.Write(CRM.GetPage());

%>

GetContextInfo accepts two parameters - entity (e.g. Company, Person, Opportunity, Case,
Solution, or Lead or marketing- and user-related entities) and the fieldname that we want to access. In
this example, we're obtaining the unique company ID.
This information is then used in a SQL statement, which will be used to select all cases that match
the context company's ID and have a "In Progress" status.
Next, the CRMGetBlock method is used to return a CRMListBlock object of type "CaseList," which
is assigned the variable nameCaseListBlock.
In the next line, we call the CaseListBlock's Execute function, passing in the SELECT statement
used to extract the required cases. The populated CaseList is in turn passed as an argument to the
CRM.AddContent method to store the page inmemory.
Finally, we call Response.Write to output the generated HTML to the screen.

Client-Side Scripting with JavaScript and DOM
Although server- side ASP offers full access to the CRM API, it is sometimes more convenient and
quicker to handle certain tasks with code that runs on the client.
Obviously, client-side JavaScript can be used in the same ASP page that contains server-side code.
Such scripts are processed by the browser, thereby eliminating round-trips to the server.
Client-side scripting in CRM ASP pages is handled in the normal way using the JavaScript scripting
language and the Document Object Model (DOM). JavaScript is a full-featured programming
language that allows developers to use an extensive library of classes, methods, properties, and
event handlers defined. The DOM provides a tree-form representation of a HTML page that can be
searched up or down to locate specific nodes.

Developer Guide 3-7

Chapter 3

Example: Client-side Validation

The following example shows a client-side JavaScript code that accesses the DOM of a
CRM generated web page in order to capture certain events and validate them. Inmost
cases you will be able to achieve your validation objectives by using the tools available
in the Field Customization chapter in the System Administrator Guide, or failing that
using Field Level Scripting (page 3-10).

One of themost common tasks for client-side scripts is validation. Client-side validation saves time
by checking, for example, whether a required field contains information before the page is sent to the
server for server-side validation.
The script below is a very basic example of validation as it merely checks whether the last name field
in the "PersonSearchBox" is empty before the search details are submitted to the server. However, it
is a useful example of how JavaScript in conjunction with DOM enables the developer to handle
events andmanipulate the interface after the page has been loaded into the browser's memory.

<script language="javascript">

document.attachEvent("onclick", Validate);

function Validate()

{

var oSource = window.event.srcElement;

if((oSource.className ==

"ButtonItem")||(oSource.parentNode.className=="ButtonItem"))

{

if(document.forms[0].pers_lastname.value=="")

{

alert("Please specify a last name"); return false;

}

else

{

return true;

}

}

}

</script>

In this example we have set up an event handler with the attachEvent method of the document
object, which is the highest-level node in the DOM representation of a HTML page.
Themethod's two parameters, "onclick" and Validate, specify that when a click event occurs on the
document, the Validate function will handle that action. The attachEvent method, which is Internet
Explorer-specific syntax, is the recommended approach for setting up event handlers as it allows for
events to havemultiple handlers. Attaching handlers to objects directly (with window.onload, for
example) has the disadvantage of allowing you to associate only one function with an event.
In the Validate function, window.event.srcElement retrieves the object that fired the event and
assigns it the variable name oSource.

if((oSource.className ==

"ButtonItem")||(oSource.parentNode.className=="ButtonItem"))

The subsequent IF statement checks whether the object that fired the event was a button. The
className property employed to check the object is typically used to associate a particular style rule
in a style sheet with the element. In this case, we're interested in an object assigned the ButtonItem
style. In this case, we've also specified "oSource.parentNode.className" because the user can
click on a *.gif image of a button that is nested in an element with the className attribute set to

3-8 Sage CRM

Chapter 3: Getting Started

ButtonItem. The parentNode, as the name indicates, allows us to check the className attribute at
the next level of the document hierarchy.
Incidentally, one way of examining the document structure in detail is to use the JavaScript alertbox
to display the HTML of a section of the document that is clicked. The innerHTML property of the
srcElement object facilitates this:

alert(window.event.srcElement.innerHTML);

The statement document.forms[0].pers_lastname.value=="" uses DOM in a straightforward fashion
(each node after the dot "." represents a further "level" down in the DOM hierarchy). So this statement
drills down to the pers_lastname field and checks whether it is empty. If it is blank, the event handler
displays a warning alertbox and returns "false," indicating that the form cannot be submitted
Note that CRM provides via the Customization interface, and inmost cases it will be preferable to
use those when working with CRM entry blocks. Please refer to Field Level Scripting (page 3-10).
See also the Field Customization chapter in the System Administrator Guide.

Accessing User Information
The CurrentUser object
Client-side scripting can actually leverage important information about the current user of the system
with the CurrentUser object. This is made available to the client through the code contained in the
include file, referenced as <!-- #include file ="sagecrm.js"-->. Behind the scenes, the supporting code
parses the query string shown in the browser's status bar to define the Session ID that identifies the
user.
The CurrentUser object provides access to extensive information about the user, stored in the
following columns in the "Users" table in the CRM database.

user_userid, user_primarychannelid, user_logon, user_lastname, user_firstname,user_language,
user_department, user_resource, user_externallogonallowed,user_isterritorymanager, user_per_
user, user_per_product, user_per_currency,user_per_data, user_offlineaccessallowed, user_per_
customise, user_minmemory,user_maxmemory, user_title, user_location, user_deskid, user_
per_infoadmin, user_device_machinename, user_per_solutions, user_prf

The combination of JavaScript, the DOM, and CurrentUser information enable the developer to
configure screens and create event handlers that respond to the current user's profile.
In this example, we show how to extend a search screen by configuring the search options depending
on the user's profile. For this scenario, we assume that all users attached to the Telemarketing
department are focused on customers belong to the "Europe" territory. So it would be quite useful if
"Europe" was automatically selected in the drop-down list of Territories if this customized Search
page is accessed by amember of the Telemarketing department.
The JavaScript below uses the CurrentUser object to ascertain the user's department.

<script language="Javascript">

var channeldept = CurrentUser.user_department;

window.attachEvent("onload", Populate);

function Populate()

{

if (channeldept=="Telemarketing")

{

var oSource = document.all.item("pers_secterr");

var dropdownloop = document.all.item("pers_secterr").length;

var setIndex = 0;

for (i=0;i<dropdownloop;i++)

{

checkText = oSource.options[i].text;

if(checkText.indexOf("Europe") != -1)

Developer Guide 3-9

Chapter 3

{

setIndex = i;

break;

}

}

document.all.item("pers_secterr").selectedIndex =setIndex;

}

else

{

document.all.item("pers_secterr").selectedIndex = 0;

}

}

</script>

The information contained by "CurrentUser.user_department" is assigned to the variable
channeldept. Next an attachEvent method specifies that a function called "Populate" is called when
the page is loaded ("onload").
The first line in the Populate event handler is to test whether the user's department is actually
"Telemarketing." If it is, we use item from the all() collection of the Document object to find the "pers_
secterr" field, which is the drop-down list featuring the available territories. (A more advanced solution
could be to use a switch statement to indicate a range of actions depending on a variable's value).
The rest of the code in the if statement loops through the options in the list in search of the entry for
"Europe". The JavaScript method indexOf checks whether the current option text contains "Europe".
If it does, the setIndex variable is set at this point in the loop and ensures that the Europe option is
visible when the page is loaded.
One of the limitations of using client-side scripting, even given the flexibility provided by the DOM, is
that we are limited to checking andmodifying information that is available on screen. If we want to
validate user-input based on data stored in the CRM database, we need to execute on the server.
Fortunately, as well as allowing ASP pages to define custom behavior, CRM enables you to enter
code directly through the interface, enabling developers to see clearly the connection between
interface elements and their event-handling code.

Scripting in the CRM Interface
Once the limitations and benefits associated with server-side and client-side scripting in a custom
ASP file are clear, the scripting options available within the CRM interface become easy to grasp.
Some scripting fields expect server-side code, others are designed to accommodate client-side
script. The easiest approach to deciding what to enter is to judge whether you will need to use objects
from the CRMBlocks hierarchy. If you do, you'll probably write server-side code. On the other hand,
code that primarily interacts with the interface can run on the client side. Scripts, such as SQL
queries, that manipulate databases need server resources to access the specified records.
There are several areas where you can enter scripts in CRM, with the chosen location reflecting the
scope of the event to be handled (a change in a single field all the way up to the addition or deletion of
a entire entity) and the action to be taken (performing a simple validation up to adding an entity).

Field Level Scripting
CreateScript, OnChangeScript, and ValidateScript
On the lowest level, whenmanaging the display of fields on an Entity screen (by choosing
Administration | Customization | <EntityName> | Screens| <ScreenName>), you can associate
behaviors with individual fields. There are three "boxes" that allow you to write code that is executed
when an event affects the field selected in the contents screen: CreateScript, OnChangeScript, and
ValidateScript.

3-10 Sage CRM

Chapter 3: Getting Started

Note: A simplified code-freemethod for defining access rights to fields has been
available since release 6.0 of Sage CRM. See the section on field security in the Field
Customization chapter in the System Administrator Guide.

Scripts written in the CreateScript and ValidateScript sections run on the server, whereas
OnChangeScript code runs on the client. We have already seen in the discussion of client-side
scripting in ASP pages how we can handle events such as the user clicking a button. We can enter in
the OnChangeScript box similar scripts, which are executed when the JavaScript event OnChange
occurs on the specified field. For example, if we have added code for the Company Type drop-down
list, it is executed when the user clicks to view options.
One of the convenient aspects of entering code in the interface is that it's not necessary to add
include statements or <script> tags. In addition, we can use the JavaScript "this" keyword to refer to
the object that triggers the code. For example, this is a simple if statement for the comp_type field
that disables another field if it contains the "Partner" value.

if(this.value =='Partner')

{

comp_revenue.disabled = 'true';

}

Another simple OnChange script can alert the user to change an entry before validation is triggered.

if(this.value.toUpperCase() == this.value)

{

window.alert(this.name + ' has been entered all uppercase');

}

Running on the server, scripts that execute when the page is loaded into CRM (CreateScript) or when
the user clicks the submit button (ValidateScript) can access the CRM API without having to include
files such as SAGECRM.JS. When writing validation scripts that execute on the server, it is worth
being aware of three system variables that greatly ease the process of trapping information and
providing feedback: Values(), Valid, and ErrorStr:

l Values() collectionmethod: This system variable holds the inbound values of data coming into
the system. This is an obvious choice for validation scripts. Values() allows you to read any
variable in the QueryString in CreateScripts. You can test for the dominant key and therefore
context simply like this: var x = Values("Key0"); Valid = false; ErrorStr = x;

l Valid: This system variable has a default value of "True", but when set to "False" marks the
current entry as invalid. This determines whether the ErrorStr value should be displayed on the
screen. Note: The effect of Valid being set to false has slightly different behavior in parts of the
system. It just displays an ErrorStr in Create scripts and blocks the commitment of data in
Validate scripts.
In more advanced situations, this variable controls the display of workflow rule buttons in
Primary, Transition, andGlobal workflow rules. In Conditional rules, setting the value of Valid
to false causes the rule to execute an alternative set of actions. In Table Level and Entity
Level scripts, which update records in response to an action, the Valid variable may simply
cause the ErrorStr to be set to the browser, or it can block the whole transaction in a way
similar to the Validation rules.

l ErrorStr: This system variable returns the string in the error content (red bar at the top of the
screen).

We can see how these variables can be used in a simple code snippet used to validate the fields
when specifying details for an opportunity.

Developer Guide 3-11

Chapter 3

if (Values('oppo_type')="Mix")

{

Valid = false;

ErrorStr = 'This Mix type is temporarily not supported';

}

In the sample above, the code could be placed in the Validate script box for the Opportunity Type field
on the Opportunity Detail Screen, which is accessed by selecting Administration |Customization |
Opportunity | Screens | Opportunity Detail Screen.
The code sample checks the information being returned using the Values () collection, specifying that
the value in the oppo_certainty field will be tested. Here we are specifying that some action will be
taken if "Mix" is selected as the Opportunity type.

Note: You can't put the script on any field if the Opportunity Type field is the one you
want to validate.

To halt validation, Valid is set to false and amessage is assigned to the ErrorStr. When triggered, the
ErrorStr text appears in a red bar above the screen.
It is worth noting that although this simple example is confined to testing information on the screen, it
is possible to use other blocks accessible through the API so you can base validation on entity
information not currently displayed onscreen. Moreover, the CRMEntryBlock object also provides a
variety of properties-such as Required, ReadOnly, MaxLength, CreateScript, OnChangeScript, and
ValidateScript-that enable you to control and respond to the values entered into a screen.
The CreateScript, OnChangeScript, and ValidateScript boxes for custom event handling are also
available elsewhere in the system, specifically when defining the rules for workflow (whichmanages
the progress of an Entity such as anOpportunity, for example, from lead stage to completed) and
escalations (which are chiefly used to remind users of upcoming events and tasks to be completed or
to notify them about the impending expiry of, say, an order). For these aspects of the system, which
will mainly use SQL queries to check database information, refer to the relevant chapters in the
System Administrator Guide.

Table Level Scripting
Another significant area where you can enter code using the interface is the Table Script screen,
accessed by selecting Administration | Customization | <EntityName> | TableScripts.
This screen allows you to specify actions to be executed when a record is inserted, updated, or
deleted into a specified table (Table Scripts) or when an entity is updated, inserted, or deleted (Entity
Scripts).
For detailed information on writing such scripts, refer to Introduction to Table and Entity Level Scripts
(page 5-12). However, if you recognize that the developer's task chiefly consists of responding to four
"triggers"-InsertRecord(), PostInsertRecord(), UpdateRecord(), and DeleteRecord()-using server-
side scripts that leverage the API, the process of drilling down to actual implementations should be
straightforward.

3-12 Sage CRM

Chapter 4: Customization Basics

In this chapter you will learn how to:

l Get an overview of CRM blocks.
l Get an overview of CRM objects.
l AddHelp to custom pages.
l Customize lists.
l Customize screens.
l Customize buttons.
l Customize the classic dashboard.
l Customize the interactive dashboard.
l Customize blocks.
l Customize systemmenus.
l Customize tabs.

CRM Blocks Overview
The Extensibility Module is required to create and customize blocks in Administration |
Customization | <Entity> | Blocks.

l All lists, screens, and fields that you create are actually blocks within the system (ListBlock,
EntryGroupBlock and EntryBlock).

l Any new blocks you createmust be based on one of the existing standard CRM blocks, for
example Container, EntryGroup, or Marquee.

l You associate all new blocks created with the entity to which they relate.
l You can create and display new blocks of data from external tables and databases that

connect to CRM. For more information on Customizing Tables refer to Database
Customization (page 5-1).

l Once you create a new block, you can reference and run the block from within CRM and in
ASP pages.

Block Naming and Custom Blocks
Aside from referring to this guide, you can use several methods to check the names of blocks
referenced in an ASP page. The approach taken depends on the type of block used. Block names can
be any of the following:

l The generic name of the block.
l The name of any custom screen (Entry block).
l The name of any custom list (List block).
l The name of any block that you have created.

Generic Block Names
All blocks are based on one of the CRM basic block types.
You can reference CRM's generic block names from the interface.
To find out the generic block names:

Developer Guide 4-1

Chapter 4

1. Select Administration |Customization | <Entity>.
2. Select theBlocks tab.
3. Click on theNew button. All the custom block names are listed in the Block Type list. The

block names correspond to themain block names in the CRM block hierarchical diagram. All
other blocks are based on one of these block types.

Name of Custom Screen (EntryGroupBlock)
A standard installation includes a number of pre-defined custom screens that EM enables you to
manipulate or copy for your own implementation. Once you have determined the exact block names,
you can call these blocks from your ASP page.
You can determine the predefined custom screen names:

l From the system interface.
l From your database tables.

From the System Interface

To find out the name of the company entry screen:

1. Select Administration |Customization |Company.
2. Select theScreens tab. The screen names are displayed in the Screen Caption column. In

this example, the screen name is CompanyBoxLong.

From the Database Tables

The other way of finding a full list of Custom Screen names is from the Custom Tables in your
database. For example, if you are using SQL Server, you can find the block names from the database
in EnterpriseManager. In this example, the custom screen names are listed under Custom_Screens
in the SeaP_SearchBoxName field.

Name of a Custom List (ListBlock)
The installation includes a number of pre-defined custom lists that EM enables you tomanipulate or
copy for your own implementation.
There are two ways of determining predefined custom list names:

l From the system interface.
l From the database tables.

From the System Interface

To find out the name of the company list (ListBox):

1. Select Administration |Customization |Company.
2. Select the Lists tab. The list names are displayed in the List Name column. In this example,

the list name is CompanyGrid.

From the Database Tables

The other way of finding a full list of block names is from Custom Tables in the database. For
example, if you are using SQL Server, you can find the block names from the database in Enterprise
Manager. In this example, the custom list names are listed under Custom_Lists in the GriP_
GridName field.

The Name of a Block that you Have Created
You can create your own blocks from the system interface. Once you have created a new block you
can refer to it from an ASP page using the name you assigned it.

4-2 Sage CRM

Chapter 4: Customization Basics

Adding Help to Custom Pages
This section describes how to add a help button and a link to context-sensitive help page from an
ASP page. Please refer to the System Administrator Guide for more information on customizing help
in the standard CRM system.

Step 1: Create a Custom Help Page
Use any HTML editor to create a HTML help page and save it to the following folder:
<Install Path><Install Name>\WWWRoot\HELP\EN\Main Menu\Content\User
For example:
C:\Program Files\Sage\CRM\CRM\WWWRoot\HELP\EN\Main Menu\Content\User
Here is an example of a complete custom help file:

Please refer to Developer Help files for code sample

Note: Make sure that youmaintain backup copies of your custom help page away from
the installation. Also note that any changes youmake to existing CRMHelp files may be
overwritten when you upgrade your CRM installation to a new version or patch release.

Step 2: Add a Help Button to your Custom Page
Once you have saved your Custom Help Page, you can add a Help Button to your ASP page. This is
the code to create the button (assuming your Custom Help Page is called FI_
SearchingForCompany.htm):

Please refer to Developer Help files for code sample

When you run the ASP page within CRM, and click the Help button, the CRMHelp system will be
launched in a new window and your page will be displayed within it.

Limitations
It is a limitation of this method that the new help page(s) that you create cannot be included in the
CRMHelp Table of Contents, Index or Search feature.

Lists

How to Create a List
You can create a new list in the following ways:

l In CRM from Administration | Customization | <Entity> | Lists.
l In an ASP page linked to CRM through the customfile action in Administration | Customization

| <Entity> | Tabs.
This page describes how to create a list within CRM. For more information on creating a list in an
ASP page refer to Building an ASP Page (page 3-1) and ASP Object Reference (page 8-1),
specifically CRMListBlock object and CRMGridColBlock object.
You can create your own lists from columns in existing tables or external tables connected to CRM.
Once you create a new list you can use different methods to display it.

Creating a New List
To create a new list:

Developer Guide 4-3

Chapter 4

1. OpenAdministration |Customization, and select an entity, for exampleCompany.
2. Select the Lists tab, and click on theNew button. The New List Definition page is displayed.
3. Enter the details in theNew List Definition page.
4. Choose theSave button. The new list is displayed.

Field Description

Name Name you assign to the List. This is also the block name that
you use to reference the list in ASP pages.

Table or View to
Select Fields From

The table or view that the fields (columns) on the list are in.

Filter Box Name The name of the filter box by which you wish to search the list.

To customize a list:

1. Select Administration |Customization, and select an entity, for exampleCompany.
2. Select the Lists tab, and click on theCustomize button beside the list you want to

customize. TheMaintain List Definition screen is displayed.

Note: Selecting the Change button next to the list name allows you to view the
New List Definition page.

3. Choose theSave button.
For more information on List Customization please refer to the System Administrator Guide.

How to Display a List
New lists can be displayed as follows:

l By creating a tab and using the page that references the list For more informatin, refer to
Display a List Using an ASP Page (page 4-4). This option enables you to set the properties of
the list before displaying it.

l On a new tab using the runblock action to directly run the list. For more information, refer to
Display a List using Runblock and the List Name (page 4-5). Note: If you use the runblock
action to run a list, the tab group to which you add the list must be the tab group for the entity
on which the list is based. This ensures that when the block is used it will maintain the context
for the current entity.

Display a List Using an ASP Page
To display a list created from an ASP file by linking to the file from a custom tab:

1. Create the ASP file. For more information refer to Building an ASP Page (page 3-1) and
Introduction to the ASP Object Reference (page 8-2) in this guide.

2. Select Administration |Customization, and select an entity, for example, Company.
3. Select Tabs.
4. Click on the hyperlink of the tab group that you want to add the tab to. The Customize Tabs

For screen is displayed.
5. Enter a name for the tab, select the customfile option from the Action list and enter the name

of the ASP page in the Custom File field.

4-4 Sage CRM

Chapter 4: Customization Basics

6. Click on theAdd button, and choose theSave button.
7. To display the list, click the new tab

Display a List using Runblock and the List Name
To display a list directly from a tab using the runblock tab action:

1. OpenAdministration |Customization | <Entity>, and select Tabs.
2. Click the hyperlink of the tab group that you wish to add the tab to. The Customize Tabs For

screen is displayed.
3. From theProperties panel, type a name for the tab in the Caption field.
4. Select the runblock option from the Action list and enter the list name you created earlier in

the Block Name field.
5. Click theAdd button and then theSave button. To view the list, you select the new tab.

Screens

How to Create a Screen
You can create a new screen in two different ways:

l In CRMwithin Administration | Customization | <Entity> | Screens.
l In an ASP page linked to CRM through the customfile action within Administration |

Customization | <Entity> | Tabs.
This page describes how to create a screen within CRM. For more information on creating a screen in
an ASP page refer toIntroduction to the ASP Object Reference (page 8-2), especially
CRMEntryGroupBlock Object (page 8-55) and CRMEntryBlock Object (page 8-43).
You can create your own screens from columns in existing tables or external tables connected to
CRM. Once you create a new screen you can use different methods to display it. You can also create
a block from the screen and use the block properties to customize the appearance of the screen.

Creating a New Screen
To create a new screen:

1. Select Administration |Customization, and select an entity, for exampleCompany.
2. Select theScreens tab and click on theNew button. The New Screen Definition page is

displayed.
3. From the Screen Type list select a screen type, for example Entry Screen or Search Screen. If

you select Search Screen, an additional field called Associated List is displayed on the New
Screen Definition page. This enables you to associate a list with the screen.

4. Enter the details in theNew Screen Definition page. See the table below for descriptions of
the fields on the screen.

5. Choose theSave button. The new screen name is displayed in the list of screens.
The table below explains the standard fields in the New Screen Definition input form.

Field Description

Screen
Name

Name you assign to the screen. This is also the block name that you
reference the screen from in ASP pages, but it is not the name that is
displayed on the actual screen.

Developer Guide 4-5

Chapter 4

Field Description

Screen
Caption

The actual name that is displayed at the top of the screen that you create,
for example theMy New Entry Screen.

Screen
Type

You can either create an Entry screen or a Search screen.

Associated
View

The name of the view that contains the screen fields.

Foreign
Table

If using fields from a foreign table, enter the table name here.

Foreign
Table
Column

The column that uniquely relates the foreign table to the CRM table and
that has a corresponding field on the CRM table.

Associated
List

Only applicable if it is a search screen. The name of the list you want to
associate the search screen with.

Customizing the New Screen

Once you have created a screen, you need to define fields for it.

To customize the new screen:

1. From Administration |Customization, select the entity in which you created the new
screen.

2. Select theScreens tab.
3. Click on theCustomize button beside the new screen you created. TheDesktop HTML

Screen Contents page is displayed.

Note: Selecting the Change button next to the screen name allows you to view
theMaintain Screen Definition page.

4. Add the fields you wish to display on the screen.
5. When you have added all the fields that you wish to display on the screen, click theSave

button.

How to Display a Screen
New screens can be displayed in a number of different ways:

l On a new tab using the runblock action to directly run the screen. See Display a Screen Using
Runblock and Screen Name (page 4-7).

Note: If you use the runblock action to run a screen, the tab group to which you
add the screenmust be the tab group for the entity on which the screen is based.
This ensures that when the block is used it will maintain the context for the
current entity. For example, if you create a new entry screen for the Company
table to edit extra data relating to companies, this can be added to the Company
tab group, but will not work on any other tab group.

4-6 Sage CRM

Chapter 4: Customization Basics

l By creating a block from the screen, then creating a new tab and using the runblock action to
run the block. This option enables you to set the properties of the block before displaying it.
Note: Similar to running a screen directly, if you use the runblock action to run a block, the tab
group to which you add the block must be the tab group for the entity on which the block is
based. See Display a screen using Runblock with a Custom Block (page 4-7).

l By creating a new tab and using the customfile action to link to an ASP page in which the
screen is referenced. This option enables you to set the properties of the screen before
displaying it. See Display a screen with an ASP page (page 4-7).

Display a Screen Using Runblock and Screen Name
To display a screen directly from a tab using the runblock tab action:

1. OpenAdministration |Customization | <Entity>, and select Tabs.
2. Click the hyper link of the tab group that you wish to add the tab to. The Customize Tabs For

screen is displayed.
3. From the Properties panel, type a name for the screen in the Caption field.
4. Select the runblock option from the Action list and enter the screen name you created earlier

in the Block Name field.
5. Click theAdd button and then theSave button.
6. To view the screen, you select the new tab.

Display a screen using Runblock with a Custom Block
To create a block from a screen, change the properties, and use the runblock tab action:

1. Select Administration |Customization | <Entity> |Blocks, and click on theNew button.
The New Block screen is displayed.

2. Enter the block details and select the name of the screen you created from the UseGroup list.
3. Choose theSave button. The block is displayed in the list of blocks for the entity.
4. Click the hyperlink of the block or select theCustomize button. The Properties screen for the

block is displayed.
5. Enter the properties and then choose theSave button. Please refer to Customizing a Block

(page 4-19) for more information on block properties.
6. Select Administration |Customization | <Entity> | Tabs.
7. Select the context to which the new block belongs from the list in the context area of the

screen.
8. Click the hyperlink of the tab group that you wish to add the tab to. The Customize Tabs For

screen is displayed.
9. On the Properties panel, select the runblock option from the Action list and enter the block

name in the Block Name field.
10. Click theAdd button and chooseSave.
11. To view the screen, select the new tab.

Display a screen with an ASP page

To display a screen created from an ASP file by linking to the file from a custom tab:

1. Create the ASP file and save it in the Custom Pages folder of your CRM installation directory.
For more information refer to Building an ASP Page (page 3-1) and Introduction to the ASP

Developer Guide 4-7

Chapter 4

Object Reference (page 8-2).
2. Select Administration |Customization | Tabs and select a context.
3. Click the hyperlink of the tab group that you wish to add the tab to. The Customize Tabs For

screen is displayed.
4. From the Properties panel, select the customfile option from the Action list and enter the

name of the ASP page in the Custom File field.
5. Click theAdd button and chooseSave.
6. To view the screen, select the new tab.

Buttons

Creating Button Groups
You can define button groups that will appear on specific CRM screens and which will give users
access to custom functionality created by you. For example, say you want to add custom ASP pages
to the Cases Summary screen so you can give users access to extra information relating to the
management of cases in your company. You can create a button group that will act as a place holder
for displaying buttons on the Case Summary screen.
To create a button group:

1. Select Administration |Advanced Customization |Button Groups. The Button Groups list
is displayed.

2. Click on theNew button. The New Button Group Definition page is displayed.
3. Type the name of the new button group in the Name field. For example, Case Summary

Button Group.
4. Select the CRM screen you want the button group to display on from the Select Action drop-

down list. For example, casesummary.
5. Click on theSave button. The new button group is displayed on the Button Groups list.

Adding Buttons to Button Groups
Once you have created a button group you can add buttons to it that will display on the relevant CRM
screen. For example, say you have created two ASP pages relating to casemanagement, one that
will provide a current list of who is responsible for all live cases and a second one that provides a
current picture of all recently closed cases. You have created a button group called Case Summary
Button Group and you would like to add two buttons to this group, each of which will bring the user to
one of the newly created ASP pages.
To add a button to a button group:

1. Select Administration |Advanced Customization |Button Groups. The Button Groups
list is displayed.

2. Click on theCustomize button for the Case Summary Button Group. The Customize Button
Group page is displayed.

3. Type the name of the new button in the Caption field, for exampleClosed Case List, and
select Customfile from the Action drop-down list.

4. Type the name of the associated ASP file in the Custom File field, for example,
CLOSEDCASELIST.ASP.

5. Select the image you would like to display with the button caption from the Bitmap drop-down
list. For example, DEFAULTBUTTONGROUP.GIF.

4-8 Sage CRM

Chapter 4: Customization Basics

6. Click on theAdd button. The new button is displayed in the Desktop HTMLButton Group
Contents area. You can use the up and down arrows to position a new button relative to other
buttons you have created.

7. Click on theSave button. The new buttons are displayed on the summary screen for any case.

Viewing Button Groups
Once you have added buttons to a button group the buttons will appear automatically on the relevant
CRM screen. Say you have added two new buttons to a newly created button group on the Case
Summary screen. You can view the new button group by opening the Case Summary page for any
case.
To view a button group:

1. Select Find |Case.
2. Search for, and open any case. The Case Summary page is displayed.

The new button group is displayed on the right-hand side of the page above the Help button.

Restricting Access to Button Groups
When creating or editing a button group, you can use an SQL statement to limit access to individual
buttons in that group. For example, youmight want to restrict access to buttons in the Case
Summary Button Group on the Case Summary screen tomembers of the Customer Service team. In
this example, the Case Summary Button Group would be displayed on the Case Summary page for
members of the Customer Service team only.

Note: Buttons in the button group take a user’s existing security rights into account. For
example, a user must have at least View rights to Cases to be able to open a button
group which displays a list of cases.

To limit access to a button group:

1. Select Administration |Advanced Customization |Button Groups. The Button Groups list
is displayed.

2. Click on theCustomize button for the Case Summary Button Group.
3. Select the button to which you want to limit access in the Desktop HTMLButton Group

Contents area.
4. Type the limiting SQL statement in the SQL field. For example,

User_PrimaryChannelId=3

5. Click on theUpdate button.
6. Select Save.

The button group is available to members of the Customer Service team only.

CRM Classic Dashboard

Customizing The Classic Dashboard
This section provides details on how to create and customize content for CRMClassic Dashboards.
An introduction to both Classic and Interactive Dashboards can be found in theCRMUser Guide.
Information on how to setup standard classic dashboards for users can be found in theCRM System
Administrator Guide.
There are three types of Blocks that can be used on the Classic Dashboard:

Developer Guide 4-9

Chapter 4

l List Block
l Chart Block
l Content Block

There are a number of fields on theMaintain Block Definition page that allow you to set the block up
for use on the Classic Dashboard. For an example of theMaintain Block Definition page, go to
Administration | Customization | Cases | Blocks and click My Cases.
The fields on theMaintain Block Definition page that have specific relevance to the Classic
Dashboard are as follows:

Field Description Applies
To:

Width Recommended that this be left blank so that the block
will fill the available space

List
Block
Chart
Block
Content
Block

Height Recommended that this be left blank so that the block
will fill the available space

List
Block
Chart
Block
Content
Block

Interactive/Classic
Dashboard Level

For a block to be displayed in the list of Available Content
in the Classic Dashboard, select one of the
following:Available In Dashboards: Block will be in the
list of Available Content for all users.Dashboard - Info
Manager: Block will be in the list of Available Content for
all users with Security Administration rights set to Info
Manager or System Administration.Dashboard -
Administration Only: Block will be in the list of Available
Content for all users with Security Administration rights
set to System Administration.

List
Block
Chart
Block
Content
Block

DoubleWidth
Block

When this option is checked, the block is spread over
two of the three columns on the Classic Dashboard.

List
Block
Chart
Block
Content
Block

Long Block When this option is checked, a longer maximum length
for the block is set.

List
Block
Chart
Block
Content
Block

4-10 Sage CRM

Chapter 4: Customization Basics

Field Description Applies
To:

Dashboard
Conditional

This allows you to enter a filter so that only records
meeting the condition aremet. For example, the 'My
Cases' block contains the following conditional to limit
records to those that are 'In Progress' and assigned to
the current user :

case_assigneduserid=#U and case_status='In

Progress';

List
Block

Contents This field can contain a wide variety of custom content,
including for example, content from external web sites.
Enter HTML (or Javascript within <script> tags) and the
resulting content will be displayed on the Classic
Dashboard.

Content
Block

Adding a List Block To The Classic Dashboard
This section explains how tomake a List Block available to users via the Classic Dashboard Content
page (see the CRMUser Guide for more information on the Classic Dashboard Content page).
The following is an example of how to add a new Case List Block for use in the Classic Dashboard:

1. Select Administration |Customization |Cases |Blocks. A list of existing blocks for the
Cases entity is displayed.

2. Select theNew button. The New Block page is displayed.
3. Type in a name for the block.
4. Set the Block Type to List Block.
5. If you wish to copy an existing block, select it from the Copy Existing Block drop-down.

Alternatively, choose a list from the UseGroup list.

If you wish to order the items in your list, youmust open the list definition, select
the field that you wish to order by, and choose 'Yes' in the Default Order By drop-
down. Note that the 'Allow Order By' setting has no effect when the list is viewed
on the Classic Dashboard.

6. Click theSave button. The new block is displayed in the list of existing blocks for the current
entity.

7. Click on the name of the new block you created (or select theCustomize button). The
Maintain Block definition page is displayed.

8. Select Available In Dashboards from the Dashboard Level list.
9. Click Save. Now when users click on theModify Dashboard button within the Classic

Dashboard tab, the newly created block is displayed in the list of Available Content.

Adding a Content Block To The Classic Dashboard
This section provides an example of how tomake a Content Block available to users via the Classic
Dashboard Content page (see the CRMUser Guide for more information on the Classic Dashboard
Content page).

Developer Guide 4-11

Chapter 4

The following example shows how to add a new Content Block for use in the Classic Dashboard. The
Content Block will display the contents of the ASP page 'Test.asp'.

1. Create the ASP page that will display the content that you want for the Classic Dashboard. It
should be saved in the CRM application's custom pages folder (see Building an ASP Page
(page 3-1) for more information about creating ASP pages in CRM).

If you are creating an ASP page that uses the GetPage() function to display
content, youmay wish to supress the tab group. In that case you should pass the
"none" parameter to the GetPage function:

Response.Write(CRM.GetPage("none"));

2. Select Administration |Customization | Secondary Entities |System |Blocks. A list of
existing blocks for the System secondary entity is displayed. Note that the System secondary
entity contains a number of lists, views, and blocks for CRM components that are not linked to
any other CRM entities, for example the News block.

3. Select theNew button.
4. Enter the Block Name and set the Block Type toContent Block. You could use the Copy

Existing Block drop-down tomake a copy of an existing block, but in this example wewill
leave the drop-down blank.

5. Select theSave button. The new block is displayed in the list of existing blocks for the
selected entity.

6. Click on the name of the new block. TheMaintain Block Definition page is displayed.
7. Select Available In Dashboards from the Dashboard Level list.
8. In the Contents field add the following:

Please refer to Developer Help files for code sample

This example code contains a Javascript function called 'callPage'. We pass the name of the
ASP page ("tesp.asp") as a parameter to the function and it will build the path including the
correct session and context information that will allow the ASP page to use CRM blocks.

9. See Customizing The Classic Dashboard (page 4-9) for details of other fields that are relevant
to the Classic Dashboard on this screen.

10. Click Save. Now when users click on theModify Dashboard button within the Classic
Dashboard tab, the newly created block is displayed in the list of Available Content.

Adding a Chart To The Classic Dashboard
This section explains how tomake a Chart Block available to users via the Classic Dashboard
Content page (see theCRMUser Guide for more information on the Classic Dashboard Content
page).
The following is an example of how to add a new Chart Block (relating to the Cases Entity) for use in
the Classic Dashboard:

1. Select Administration |Customization |Cases |Blocks. A list of existing blocks for the
Cases entity is displayed.

2. Select theNew button. The New Block page is displayed.
3. Type in a name for the block.
4. Set the Block Type toChart Block.

4-12 Sage CRM

Chapter 4: Customization Basics

5. Select an existing block to copy from theCopy Existing Block drop-down, or leave the field
blank.

6. Choose theSave button.The new block is displayed in the list of existing blocks for the
selected entity.

7. Click on the name of the new block you created. TheMaintain Block definition page is
displayed.

8. Select Available In Dashboards from the Dashboard Level list.
9. Click Save. Now when users click on theModify Dashboard button within the Classic

Dashboard tab, the newly created block is displayed in the list of Available Content.

CRM Interactive Dashboard

Customizing the Interactive Dashboard
This section provides details on how to create and customize content for CRM Interactive
Dashboards. An introduction to both Classic and Interactive Dashboards can be found in theCRM
User Guide.
Content Blocks can be used on the Interactive Dashboard:
There are a number of fields on theMaintain Block Definition page that allow you to set the block up
for use on the Interactive Dashboard. For an example of theMaintain Block Definition page, go to
Administration | Customization | System | Blocks and click News.
The fields on theMaintain Block Definition page that have specific relevance to the Interactive
Dashboard are as follows:

Field Description

Dashboard
Level

For a block to be displayed in the list of Available Content in the
Dashboard, select one of the following:Available In Dashboard: Block will
be in the list of Available Content for all users.Dashboard - Info Manager
Only: Block will be in the list of Available Content for all users with
Security Administration rights set to Info Manager or System
Administration.Dashboard - Administration Only: Block will be in the list of
Available Content for all users with Security Administration rights set to
System Administration.

Contents This field can contain a wide variety of custom content, including for
example, content from external web sites. Enter HTML (or Javascript
within <script> tags) and the resulting content will be displayed on the
Interactive Dashboard.

Example: Adding a Content Block to the Interactive Dashboard using the
Contents field
This example shows you how tomake a simple content block available to end users by pasting
HTML into the Contents field on theMaintain Block Definition page.

To add a content block:

1. Copy some simple HTML to your clipboard. For example, if you have a company phone list
available in MSWord, you can Save As .HTM, then edit in Notepad, and select and copy the
HTML to your clipboard.

Developer Guide 4-13

Chapter 4

2. In CRM, select Administration |Customization |Secondary Entities |System |Blocks,
and click New.

3. Give the block a name, and select Content Block from the Block Type drop-down.

New Blockpage

4. Click Save.
5. Click the pencil icon next to the new block you have created.
6. Set the Interactive/Classic Dashboard Level toAvailable in Dashboards.
7. Paste the HTML into theContents field.

Maintain BlockDefinition page

The DoubleWidth Block and Long Block properties apply to the Classic Dashboard only. Set
these if you want the block to display as a larger sized block on the Classic Dashboard.

8. Click Save.
9. To test the block, go toMy CRM |Dashboard, and either on an existing or new dashboard,

create a newWeb Site gadget.
10. Select the new content block from theContent Block drop-down and complete the gadget

wizard steps.

WebSite gadget

The gadget is displayed on the dashboard, showing the content block that you created.

4-14 Sage CRM

Chapter 4: Customization Basics

Content block inWeb Site gadget on the Interactive Dashboard

Example: Adding a Content Block To The Interactive Dashboard based on
an ASP page
This section provides an example of how tomake a Content Block available to users via the
Interactive Dashboard Content page (see the CRMUser Guide for more information on the
Interactive Dashboard Content page).
The following example shows how to add a new Content Block for use in the Interactive Dashboard.
The Content Block will display the contents of the ASP page 'Test.asp'.

1. Create the ASP page that will display the content that you want for the Interactive Dashboard.
It should be saved in the CRM application's custom pages folder (see Building an ASP Page
(page 3-1) for more information about creating ASP pages in CRM).

If you are creating an ASP page that uses the GetPage() function to display
content, youmay wish to suppress the tab group. In that case you should pass
the "none" parameter to the GetPage function:

Response.Write(CRM.GetPage("none"));

2. Context is available to Content Block.
Please refer to Developer Help files for code sample

3. Select Administration |Customization | Secondary Entities |System |Blocks. A list of
existing blocks for the System secondary entity is displayed. Note that the System secondary
entity contains a number of lists, views, and blocks for CRM components that are not linked to
any other CRM entities, for example the News block.

4. Select theNew button.
5. Enter the Block Name and set the Block Type toContent Block. You could use the Copy

Existing Block drop-down tomake a copy of an existing block, but in this example wewill
leave the drop-down blank.

6. Select theSave button. The new block is displayed in the list of existing blocks for the
selected entity.

7. Click on the name of the new block. TheMaintain Block Definition page is displayed.
8. Select Available In Dashboards from the Dashboard Level list.

Developer Guide 4-15

Chapter 4

9. In the Contents field add the following:
Please refer to Developer Help files for code sample

This example code contains a Javascript function called 'callPage'. We pass the name of the
ASP page ("test.asp") as a parameter to the function and it will build the path including the
correct session and context information that will allow the ASP page to use CRM blocks.

10. See Customizing The Interactive DashboardCustomizing The Classic Dashboard (page 4-9)
for details of other fields that are relevant to the Interactive Dashboard on this screen.

11. Click Save. Now when users click on theNew Gadget :Create Gadget button within the
Interactive Dashboard tab, then selects Web Site as the type of gadget the newly created
block is displayed in the list of Content Blocks available.

Adding a Third-party gadget to the Interactive Dashboard
This section explains how tomake a 3rd party gadget available to users via the Interactive
Dashboard.
A number of methods have been exposed to let you write gadgets in JavaScript, which can
communicate with other CRM gadgets via the Event Channel that is used by native CRM gadgets.
The data is passed in JSON format.

l scrmGetSageCRMOwner
l scrmRegisterEvent
l scrmPublishEvent
l scrmGetGadgetProperty
l scrmSetGadgetProperty
l scrmSaveGadgetProperties

These third-party gadgets are set up as Web Site gadgets, which link to a file in the
wwwroot\staticcontent folder. They can be used inMy CRM context or the Company context.

Like List and SData gadgets, third-party gadgets can send or receive data from other gadgets. In
other words, they can set the filter or be filtered by other gadgets.
For example, to link a sample third-party gadget to a company list and a company summary gadget:

1. Copy the sample third-party gadget file to
..\ProgramFiles\Sage\CRM\[installname]\WWWRoot\StaticContent

2. Set up a List gadget and a Record Summary gadget – both using company data.
3. Add aWeb Site gadget which links to third-party gadget file, for example: #crm_

server#/StaticContent/[gadgetfilename].html
4. Click on the Links button on theWeb Site gadget, and link to the company list and Record

Summary gadgets.
5. Scroll through the Company List and watch the data on the third-party gadget change.
6. Enter a CRMCompany ID on the third-party gadget, click Publish, and watch the Record

Summary populate with the company data.

4-16 Sage CRM

Chapter 4: Customization Basics

scrmPublishEvent

Description Publishes event

Parameters gadget: Gadget that calls themethod

fieldName: field name that is being published

jsonData: data to publish, the first property must be called "entityRecordId" andmust
contain value of field called fieldName

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

parent.scrmRegisterEvent(gadget, "Test Field", "5", null, "BOTH");

message = '{"entityRecordId":"' + document.forms[0].elements["companyId"].value

+ '"}';

parent.scrmPublishEvent(gadget, "Test Field", message);

scrmRegisterEvent

Description Registers event classes the gadget will post and/or listen to

Parameters gadget: Gadget that publishes/receives event; Must not be null. May be
obtained by calling scrmGetSageCrmOwner method

entityId: ID (custom_tables.bord_tableid) of entity that gadget
publishes/may listen to. May be null;

fieldType Type of field the gadget publishes/may listen to. May be null;

fieldName: Name of field the gadget publishes/may listen to. Must not be
null or empty;

direction: one of: "PUBLISH" (when gadget publishes information),
"LISTEN" (when gadget responds for events in other gadgets), "BOTH";
Must not be null or empty;

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

parent.scrmRegisterEvent(gadget, "Test Field", "5", null, "BOTH");

scrmGetGadgetProperty

Description Gets gadget properties

Parameters gadget: Gadget that calls themethod

propertyName: name of the property to read

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

propValue = parent.scrmGetGadgetProperty(gadget,

document.forms[0].elements["propertyName"].value);

Developer Guide 4-17

Chapter 4

scrmSetGadgetProperty

Description Sets gadget properties so they can be saved

Parameters gadget: Gadget that calls themethod

propertyName: name of the property to read

propertyValue: value of the property to read

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

parent.scrmSetGadgetProperty(gadget,

document.forms[0].elements["propertyName"].value,

document.forms[0].elements["propertyValue"].value);

parent.scrmSaveGadgetProperties(gadget);

scrmSaveGadgetProperties

Description Saves gadget properties on the server so they can be used again

Parameters gadget: Gadget that calls themethod

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id);

parent.scrmSetGadgetProperty(gadget,

document.forms[0].elements["propertyName"].value,

document.forms[0].elements["propertyValue"].value);

parent.scrmSaveGadgetProperties(gadget);

scrmGetSageCRMOwner

Description Finds the web site gadget that owns the current page

Parameters iframeDomElementId : Id of the iframe element that is stored by the url
gadget

Example gadget = parent.scrmGetSageCrmOwner(window.frameElement.id)

Blocks

Creating a New Block
There are two ways to create a new block:

l In Administration | Customization | <Entity> | Blocks.
l In an ASP page linked to CRM through the customfile action in Administration | Customization

| <Entity> | Tabs.
This section describes how to create a block within CRM. See also CRM Blocks Overview (page 4-
1).
All new blocks you create in CRM are based on one of the CRM custom blocks. You can then
customize the properties of the block.
Any lists or screens that you create in Administration | Customization | <Entity> | Lists and in
Administration | Customization | <Entity> | Screens can be customized by creating a block from the

4-18 Sage CRM

Chapter 4: Customization Basics

list or screen and editing the properties of the block. These blocks are also available for use within
ASP pages.
When a block is created, it is given a name and values for its properties. The blocks can then be
accessed within an ASP page by using the CRM.GetBlock('blockname') method. The object returned
by the GetBlock method has the specified properties already set.
To create a new block:

1. Select Administration |Customization |Company |Blocks.
2. Click on the New button. The New Block page is displayed.
3. Add the information for the new block. The fields are described in the table below.
4. Choose theSave button. The new block appears in the list of available blocks for the entity.

The table below describes each of the fields in the New Block page.

Field Description

Block
Name

Any text to describe the new block being created. This is the name that you
use to reference the block from an ASP page.

Block
Type

Defines the type of block. All the custom block types are available in a list.

Copy
Existing
Block

This is a list of blocks that already exist (including any new blocks you have
created). Itis possible to make a new block that is a copy of an existing block
and then further refine it.

Use
Group

'EntryGroupBlock' or 'ListBlock', in which case it is a selection of the
available screens and lists.One of thesemust be selected for the block to be
associated with it.

Customizing a Block
To change the properties of an existing block or to specify the properties for a newly created block:

1. From Administration |Customization | <Entity> |Blocks.
2. Click on the hyperlink of the block name or select theCustomize button. TheMaintain Block

definition page is displayed. The properties available vary depending on the type of block. As
this is an EntryGroup block, the properties relate to block height and width as well as adding
buttons.

3. Enter new properties or change the existing ones.
4. Choose theSave button.

Properties that can be specified on theMaintain Block definition page differ depending on the block
type. Please refer to Introduction to the ASP Object Reference (page 8-2) for detailed information on
specific properties that can be defined for each CRM block.

Displaying a Block
You display blocks that you create as follows:

l On a new tab using the customfile tab action to link to an ASP page that references the block.
l On a new tab using the runblock action to directly run the block.

Note: Only blocks of the following type can be run directly using runblock:

l Any EntryGroupBlock that is based on a screen of the current entity
l Content blocks

Developer Guide 4-19

Chapter 4

l Marquee blocks
l Message blocks
l Chart blocks

For more information on running blocks from tabs and ASP pages refer to Adding a Tab that Links to
an ASP Page (page 4-25) and Tab Actions (page 4-27).

System Menus

Modifying System Menus
The Systems Menu functionality enables you to customize the following special types of tab groups:

l Administrationmenu.
l Mainmenu.
l Individual Administration work areas.
l SomeUser (MainMenu) work areas.

Note: In order to edit the tab groups for Primary and Secondary Entities, you access
them via Administration | Customization, but you edit the tab groups for SystemMenus
via Administration | Advanced Customization | SystemMenus.

For more information on SystemMenus please refer to the System Administrator Guide.
To access mainmenu buttons:

1. Select Administration |Advanced Customization |System Menus, and select
MainMenu. The Customize Tabs For MainMenu page is displayed. You can now add, delete,
and update the tabs in theMainMenu tab group.

Creating a Main Menu Button
Within SystemMenus, you can create new mainmenu buttons, and link them to custom pages.
To create amenu button that links to a custom page:

1. Select Administration |Advanced Customization |System Menus.
2. Click on the hypertext link of MainMenu. The Customize Tabs for MainMenu page is

displayed.
3. From the Properties panel, enter a Caption name, for exampleMyWeb.
4. Select Custom URL (orCustom File if your search page is an ASP page that you have built)

from the Action list.
5. Enter the file name in the Custom File field. If you want to link to aWeb page as opposed to a

custom page, type the URL in the URLName field.
6. Select a GIF from the choices provided. If you have created your own graphic using aGIF

editor, copy it to the following subdirectory of your install so that it is displayed as one of the
choices: ..\Img\Menu.

7. Select Yes from the New Window list if you want the new page to be displayed in a new
window.

8. Select theAdd button and then choose theSave button. TheNew Menu button is displayed
on the left-hand side of the screen. When you click on it, the custom page is displayed in a
new window.

4-20 Sage CRM

Chapter 4: Customization Basics

Creating an Admin Menu Button
You create new Administrationmenu (or home page) options in the sameway as you add new main
menu options.
To create a new Administration option that links to a custom page:

1. Select Administration |Advanced Customization |System Menus.
2. Click on any of the Admin hypertext links, for exampleAdmin (the Administrationmainmenu

and home page) orAdminUsers (the Users home page). The Customize Tabs for MainMenu
page is displayed.

3. From theProperties panel, enter a Caption name.
4. Select Custom File from the Action list.
5. Enter the file name in the Custom File field.
6. Select a GIF from the choices provided.
7. Select theAdd button and then choose theSave button. The new menu Administration option

is added.

Creating an External Link on the Main Menu
This example creates a new mainmenu option that opens your company's Internet home page in a
new window.
To create the new menu option:

1. Select Administration |System |System Behavior.
2. Click on theSystem Behavior tab, and select theChange button. The System Behavior

settings page is displayed.
3. In the Home page URL field type your company's home page URL, for example:

http://www.yourhomepage.com.
4. Click theSave button.
5. When you log off and back on, the new menu option is displayed on the left hand side of the

screen. Selecting it opens your company's home page in a new window.

CRM Objects Overview
The following is a brief description of the full range of CRM objects.

Dispatch Object

Controls all Web requests and responses, and finds the relevant UserSession and sets the session
keys. When the user requests something to be done, for example, enter a new company or show
communications, the request is sent to the application's Webmodule, which creates an object to
process the request and output the relevant response. You do not have any access to the Dispatch
object as it is internal to CRM.

CRM Object

Provides basic access to CRM objects and functionality. You use themethods of this object to
create new objects, get existing objects, and execute objects.

CRMBase Object

Provides functionality that is only applicable in the CRM environment, such as the company currently
being viewed. This object is often used to set up the current context information for the current view
and to display tabs that apply to that view.

Developer Guide 4-21

Chapter 4

CRM TargetLists Object

The CRM TargetList Object is used to create Target Lists.

Note: In version 6.0 and above, target lists are referred to as "groups." However, to
ensure that legacy code continues to work with new installations, the older term, "target
lists" is maintained in the API terminology.

CRM TargetListFields Object

This is a container for a list of TargetListField objects.

CRM TargetListField Object

The fields that are displayed on the target list.

CRMSelfService Object

Contains methods and properties that enable self service users to access information relevant to
them from the Self ServiceWeb site.

MsgHandler Object

Used to customize the script deployed by E-mail Management, theMsgHandler object provides
access to the Email Object.

Email Object

Used to customize the scripts deployed by E-mail Management, the Email Object provides access to
the e-mail itself.

AddressList Object

Used to customize the scripts deployed by E-mail Management, the AddressList Object provides
access to To, CC, and BCC lists of addresses.

Mail Address Object

Used to customize the scripts deployed by E-mail Management, theMailAddress Object provides
access to individual addresses from the AddressList Object.

AttachmentList Object

Used to customize the scripts deployed by E-mail Management, the AttachmentList Object provides
access to e-mail attachments.

Attachment Object

Used to customize the scripts deployed by E-mail Management, the Attachment Object provides
access to individual e-mail attachments from the AttachmentList Object.

CRMRecord Object

Represents records in a table. This object is an enumerator that returns all the specified fields in a
table. You use the CRM object's CreateRecord or FindRecordmethods to get the record.

4-22 Sage CRM

Chapter 4: Customization Basics

CRMQuery Object

Enters and executes SQL statements against a knownCRM database. Used to perform more
powerful queries than you can with the CRMRecord object.

CRMBlock Object

The base of all CRM blocks. This block determines the actual implementation of each of the
CRMBlock methods and properties.

CRMContainerBlock Object

Used to group other blocks on a screen. This block contains the standard CRM buttons Change,
Save, Delete, and Continue. You can also configureWorkflow buttons on screens where they are
required to display. A linked search panel and related list is an example of a container block.

CRMEntryGroupBlock Object

Used to group entries to create a screen. You can generatemany different kinds of entry groups, such
as a Company Search Box, a Person Entry Box, and a Case Detail Box. This block also contains the
standard CRM buttons.

CRMListBlock Object

Generates a custom list from columns in a CRM table, or a table connected to CRM through
Administration | Advanced Customization | Tables And Databases.

CRMEntryBlock Object

Corresponds to a single field that is to be displayed or edited on-screen. There aremany different
entry types that you can create, such as text blocks, multi-select boxes, and currency input boxes.
You typically add Entry blocks to EntryGroups or Containers. You can use JavaScript scripts on
these blocks to perform tasks when they load, change, or are validated.

CRMGridColBlock Object

Related to the List block. Corresponds to a single columnwithin the List block. You use theGridCol
block to change properties on individual columns of a list.

CRMMarqueeBlock Object

Adds scrolling text to a page. The content of the text is maintained through Administration |
Customization | Translations. You can use the properties of this block to control the direction, speed,
and style of the scrolling text.

CRMFileBlock Object

Provides access to external files that are not part of CRM and enables the files to appear as if they
are part of CRM.

CRMMessageBlock Object

Allows you to sendmessages in e-mail and SMS format. Include this block in ASP pages to display a
simple e-mail form or to automate themessage sending in response to a certain event.

Developer Guide 4-23

Chapter 4

CRMContentBlock Object

Simple block that takes a string of content (text) and displays it on the page. Used to write out a line
of HTML to the browser.

CRMGraphicBlock Object

Enables the display of images through an ASP page. It is more powerful than standard static images,
as variables can be used in their creation. These variables may represent live data from a database or
incorporate details of the current user, such as their privileges or settings.

CRMChartGraphicBlock Object

Displays a variety of different charts. These charts may be generated from data retrieved via SQL or
added through an ASP page. Inherits all the functionality of the Graphics block.

CRMOrgChartGraphicBlock Object

An implementation of the Graphics block being used for organizational charting. These charts may
depend on data retrieved via SQL or added through ASP for their data. Inherits all the functionality of
the Graphics block.

CRMPipeLineGraphicBlock Object

Creates cross-section diagrams representing data from an ASP page or stored in a table. Inherits all
the functionality of the Graphics block.

Tabs

Creating a New Tab Group
When you link to a new table either in the CRM database or from an external database, you can
create a new group of tabs to display the lists, screens, and charts for that table. You create new tab
groups in Administration | Customization | <Entity> | Tabs. Once you create a new tab group you can
display it by linking it to amainmenu button.
Note: The following example assumes that a connection has already beenmade to an external table
called InstallBase in a database called External. For information onmaking connections to external
databases and tables, refer to Creating a New Database Connection (page 5-3).

To create a new tab group from a newly connected table:

1. Select Administration |Customization, and select the new table, InstallBase, from the
Secondary Entities drop-down.

2. Select Tabs. Themessage displayed indicates that there are no tab groups for the entity.
3. Click on theNew button and add a name for the new TabGroup, for example InstallBase. The

new tab group is displayed in the list of tab groups.
4. To add tabs to the tab group, click on theCustomize button or the Tab Group Name

hypertext link.
5. Add the new tabs to the tab group. For more information on creating tabs, please refer to

Adding a Tab that Links to an ASP Page (page 4-25).
6. Choose theUpdate button, and Save the changes youmade.
7. To view the tab group, you need to create a new mainmenu button and set it to link to an ASP

page, which calls the tab group.

4-24 Sage CRM

Chapter 4: Customization Basics

For step-by-step details on creating amainmenu option to display a tab group, see below. For more
detailed information please refer to Creating aMainMenu Button (page 4-20).

When you click the new menu button the tabs in the new tab group are displayed.

Editing the Main Menu Tab Group
TheMainMenu is a special type of tab group customizable via Administration | Advanced
Customization | SystemMenus.

Note: The User (My CRM), MainMenu, and Team CRM tab groups, are all editable via
Administration | Advanced Customization | SystemMenus.

To edit theMainMenu tab group:

1. Select Advanced Customization |System Menus. The list of SystemMenus is displayed.
2. Click on the hypertext link or theCustomize button of the tab group (SystemMenu) you want

to edit, for exampleMainMenu.
3. Add the new button to the tab group and Save the changes.

For more information on customizing tabs refer to the System Administrator Guide.

Adding a Tab that Links to an ASP Page

Add a New Tab that Links a Company to an External Invoice List

Note: This example assumes that a connection has already beenmade to an external
table called Invoices. It also assumes that a list called Invoices_List has already been
created using the external Invoices table.

To add a new Tab that links to a list:

1. Click onAdministration |Customization |Company | Tabs.
2. Click on the hypertext link of the Company tab group.The Customize Tabs For Company page

is displayed.
3. From the Properties panel, enter a caption for the new tab, for example Invoices.
4. Select customfile from the Action list.
5. In the Custom File field, enter the name of the file you want to link to.
6. Click theAdd button, and choose theSave button.The ASP page displayed below,

Invoices.asp, sets the tab to display the invoice list for the current company. It is calling a
previously created Invoice List. For more information on creating lists refer to How to Create a
List (page 4-3).
<!-- #include file ="sagecrm.js" -->

<%

// Get the current company ID

var ThisCompany=CRM.GetContextInfo("Company","Comp_CompanyID");

// Call the list block that you previously created for invoices.

var Invoices=CRM.GetBlock("Invoice_List");

Invoices.Title="3rd Party Invoice History";

// Display the list for invoices for the company.

CRM.AddContent(Invoices.Execute("CustomerID="+ThisCompany));

Response.Write(CRM.GetPage());

%>

Developer Guide 4-25

Chapter 4

7. You can view the new tab by finding a company.
8. When you click the Invoices tab a list of invoices for the current company is displayed.

Restricting Access to the Tab
When creating or editing a tab, you can enter a SQL statement in the SQL field, which specifies that
the current recordmust match in order for the tab to be displayed.
For example, if you are adding an invoices tab to the company tab group, you can restrict tab access
to users in the Direct Sales team.

Note: Avoid using script in the following format if you intend on restricting several tabs:
user_userid=4.This is because the database gets queried separately for each restricted
tab.

Instead, use the following script to query CRM:

l U:4,5 - to limit the tab to users whose ID is 4 or 5, for example.
l C:4,5 - to restrict the tab to certain teams, for example teams with a Channel ID of 4 or 5.
l T: - to restrict the tab to territories.

The following table describes the fields on the Properties panel.

Field Description

Caption Name of the tab, for example Invoices.

Action Selecting a tab action from the list enables you to display various
CRM screens. Please refer to Tab Actions (page 4-27) for an
explanation ofavailable actions.

Custom File / Url
Name /Block
Name / Tab
GroupName /
System Action

The field name displayed here depends on what Action type is
selected.
If the Action selected is customfile, enter the file name in the
Custom File field.
If the Action selected is customurl, enter the URL in the URL
Name field.
If the Action selected is runblock, type the block name in the
Block Name field.
If the Action selected is runtabgroup, type the tab group name in
the TabGroup Name field.
If the Action selected is other, select a system action from the
System Act. field.

SQL You enter SQL in this field to restrict use of the tab to specified
users or groups of users.Also refer to Restricting Access to the
Tab.

Bitmap If you are creating amenu button that links to a custom page,
choose aGIF from the list. If you have created your own graphic
using aGIF editor, copy itto the ...\Img subdirectory of your install
so that it is displayed as one of the choices.

New Window If you want the new screen to display in a new window, set this
field to Yes.

4-26 Sage CRM

Chapter 4: Customization Basics

Field Description

Available Online
Only

If you want the tab to be available online only for Solo installations,
select this check box. Please refer to the Solo Guide for more
information.

Tab Actions
Various actions are available from the Action list on the Properties panel of the Customize Tabs For
page when creating a new tab. These are:

l customfile
l customurl
l runblock
l runtabgroup
l other (system actions)

All of the actions enable you to display different CRM screens. Screen areas that can be displayed
vary from typical search screens to custom screens created using ASP pages. Please refer to the
System Administrator Guide for details of the various system actions that are available if you do not
have Extensibility Module (EM). If you have EM, additional actions are available. These actions are
described below.

Customfile and Customurl
The customfile and customurl options enable you to display custom ASP pages as well as URLs
from a tab. Please refer to Adding a Tab that Links to an ASP Page (page 4-25), refer toCreating an
External Link on theMainMenu (page 4-21), andModifying SystemMenus (page 4-20) for examples
of how to use both Actions.

Runblock
You use this action to display blocks of the following types:

l Any Screen name of a screen that is based on the current entity.
l Any List name of a list that is based on the current entity.
l Any EntryGroupBlock that is based on a screen of the current entity.
l Content blocks.
l Marquee blocks.
l Message blocks.
l Chart blocks.

Runtabgroup
You use this to display tab groups.

Other
Selecting this option enables you to select a System Action. These are described in detail in the
System Administrator Guide.

Developer Guide 4-27

Chapter 5: Database Customization

In this chapter you will learn how to:

l Get an overview of database customization.
l Create a new table.
l Create a new database connection.
l Create a new table connection.
l Create a Tab to Display a List of Invoices.
l Display an Individual Invoice from a List.
l Add new data entry andmaintenance screens.
l Get an overview of table and entity scripts and functions.
l Work with the Advanced CustomizationWizard.

Introduction to Database Customization
As well as creating new tables in the CRM system, you can create new database and external table
connections within Administration | Advanced Customization | Tables And Databases. A database
connection is the registration of another database that the CRM server can connect to directly or
indirectly. You choose which database type you want to make a connection to from a selection of
predefined database types. Once a database connection is set up, a new table connection can be
created by referencing this connection or any other existing database connection that is set up within
CRM.
To access Administration | Advanced Customization | Tables And Databases, you need:

l Extensibility Module.
To connect to external databases and tables:

l The database with which the connection is made needs to have a field that can be used to
uniquely identify the table within CRM, and theremust be amatching field with this value on
the related table within CRM.

Creating a New Table
To create a new table in the CRM database:

1. From Administration |Advanced Customization | Tables And Databases, select the
Create Table button. The Table Details screen is displayed.

2. Type a table name in the Table name field. Note that the name should be one word only.
Spaces are not permitted in table names.

3. Click on the Table Caption field. A caption, which is the same as the Table Name, is entered
automatically in the field.

4. Enter an ID Field name in the following format: <columnprefix>_<tablename>id, for example,
newt_newtableid.

5. Enter a column prefix in the Column Prefix field, for example newt. Note that youmust not
include an underscore, this will be added automatically by CRMwhen the table is created.

Developer Guide 5-1

Chapter 5

Note: youmust enter an ID Field (step 4) and a column prefix (step 5) in order to
use the table like a normal CRM table with screens, lists etc. It is therefore
recommended that you always enter an ID Field and a column prefix.

6. Complete the rest of the fields using the table at the end of this section.
7. Select Save.

The new table is created on the CRM database. The following table columns are automatically
created when the new table is created.

Col Names Additional Info

Newt_NewTableId To record the unique ID for records.

Newt_CreatedBy To record the User who creates a new record.

Newt_CreatedDate To record the date when new records are created.

Newt_UpdatedBy To record the user who updates a record.

Newt_UpdatedDate To record the date when a record is created.

Newt_Timestamp To record the time when a record is created.

Newt_Deleted To record the date when a record is deleted.

If you want to be able to link the new table records to Companies, People, or Users (and, to this end,
you entered a name in the Company ID Field, Person ID Field, or User ID field on the Table Details
screen) an additional ID field is created.
The following table describes the fields on the Table Details screen:

Field Description

Table
Name

The name of the table you are about to create.

Table
Caption

The text for the table caption. This caption is displayed in lists.

Note: The caption should not contain spaces and it is highly
recommended that the caption and the table name are the
same.

ID Field
Name

The name of the unique ID field (column) in the table that uniquely
identifies the table.

Column
Prefix

The prefix for the columns in the table. This is usually three to four
characters. A column prefix typically reflects the table name, for example
"comp_" is the prefix for the company table. Note you should not include
the underscore or an error message will be generated.

Description
Field

Fill in the description field if you want to use this table as a lookup. If this
field is filled in then when you are configuring a selection entry type, the
table will be available in the ‘Existing Lookups’ drop down.

5-2 Sage CRM

Chapter 5: Database Customization

Field Description

This field should only be filled in for tables that are going to
have small amounts of rarely changing data in them as the
records are loaded intomemory. Also it is the users
responsibility to ensure that metadata is refreshed whenever
changes aremade to the table to ensure that the changes are
reflected in the drop down list.

If the table contains a large number of records (an approximate limit is
1,000), CRMmay time out when loading.

Top Level
Entity

Select Yes if you want the table to be a Primary entity.

Allow Web
Service
Access

Allows the table to be accessed by Web Services.

Read-only
SData

Allows the table to be accessed by SData Provider. Please see SData
Read-only (page 10-1) for more information.

Workflow
Id Field

The name of the field that will be used for workflow identification.

Company
Id Field

Enter a field name that will be used to hold identity values to link the new
table to the Company entity.

Person Id
Field

Enter a field name that will be used to hold identity values to link the new
table to the Person entity.

User Id
Field

Enter a field name that will be used to hold identity values to link the new
table to the User entity.

Creating a New Database Connection
To create a new database connection to, for example, connect to a third party database:

1. Select Administration |Advanced Customization | Tables And Databases.
2. Select theNew Database Connection button. The Database Details page is displayed.
3. Enter the database details and choose theSave button.

The new database becomes available in the list of available databases when you aremaking a new
table connection.
The table below describes the fields on the Database Details page.

Field Description

Database Driver The database type, for example ODBC, Oracle or SQL.

Server Name The name of the database server if it is an SQL server.

Database Name The name of the database that you want to connect to.

Developer Guide 5-3

Chapter 5

Field Description

Database Description Description of the database that you want to connect to.

Username The database username.

Database Password The database password.

Creating a New Table Connection
To connect to an external table:

1. Select Administration |Advanced Customization | Tables And Databases.
2. Select theNew Table Connection button. The Table Details page is displayed.
3. Enter the table details and choose theSave button. Once a new table connection has been

created:
l The table becomes available from Administration | Customization | Secondary Entity

drop-down list. Note that you cannot add views to an external table.
l All the columns in the table are displayed as fields in Administration | Customization |

<external table> | Fields. The fields can be added to various screen areas, such as
Lists and Screens, in Administration | Customization | <external table>.

The table below describes the fields on the Table Details page.

Field Description

Table Name The actual name of the table that you want to connect to.

Table
Caption

The text to be used to describe the table. This caption is displayed in
lists.

Database The database on which the table exists.

Note: It is not possible to create a connection to two or more external tables if both
tables contain a field with the same name.

Example: Creating a Tab to Display a List of Invoices
The following example describes how to connect CRM to a table called Invoices, which resides on a
third-party database called External. The example shows how to display data from the table through
CRM. The Invoices table contains a field called Customerid that can be used to uniquely identify
companies within CRM. The company table in CRM has a corresponding field with this value.
The External database and the Invoices table are not supplied with the sample data in CRM. The
External database and the Invoices table are also used in Example: Displaying an Individual Invoice
from a List (page 5-6) and in Example: Adding New Data Entry andMaintenance Screens (page 5-7) .
You can try out the examples with your own sample third-party database, or create your own using a
tool such as SQL EnterpriseManager.
The steps involved in displaying information from the Invoices table in list format are as follows.

l Step 1: Make a connection to the External third-party database.
l Step 2: Make a connection to the Invoices table within the database.
l Step 3: Create the List object for Invoices.

5-4 Sage CRM

Chapter 5: Database Customization

l Step 4: Create a custom page to display the list with all invoices for the current company.
l Step 5: Add a new tab in CRM that links to the custom page.

Step 1: Make a Connection to the Third Party Database

Tomake a connection to the third-party database:

1. OpenAdministration |Advanced Customization | Tables And Databases.
2. Select theNew Database Connection button, and complete the fields on the Database

Details page.
3. Choose theSave button. The connection between CRM and the external database is made.

Step 2: Make a Connection to the Invoices Table in the External Database
Tomake a connection to the Invoices table within the external database:

1. OpenAdministration |Advanced Customization | Tables And Databases, and select the
New Table Connection button. The Table Details page is displayed.

2. Complete the fields on the Table Details page.
3. Choose theSave button. The table becomes available from the Secondary Entities drop-down

list inAdministration |Customization.

Step 3: Create the List Object for Invoices
To create the list object for Invoices:

1. WithinAdministration |Customization | Invoices | Lists.
2. Select theNew button.
3. Enter a name for the list and select the table that it is to be based on.

Note: You needmake a note of the name of the new list you create. This is the object name
you reference from the ASP page.

4. Click theSave button.
5. Click on the new list name hypertext or theCustomize button, and add the columns from the

Invoices table that you want to be displayed in the list.
6. Choose theUpdate button, and Save the new list.

Step 4: Create the Custom Page
To create the custom page to display the Invoice List for the current company:

1. Create a new ASP page and save it using the file name, invoices.asp.
2. Themain block of the ASP page should contain statements to perform the following tasks:

l Retrieve the identifying value for the current Company and assign it to a variable:
ThisCompany=CRM.GetContextInfo("Company","Comp_CompanyId");

l Create a block for the Invoice List and assign it to a variable. Note you need to
reference the list created in the previous step. Invoices=CRM.GetBlock("Invoice_
List");

l Write the list to the screen by executing the List Block, telling it to only show records for
this company: CRM.AddContent(Invoices.Execute("Customerid="+ThisCompany));
Response.Write(CRM.GetPage());

The Invoices.asp file is displayed below.

<!-- #Include file = "sagecrm.js" -->

<%/*

Developer Guide 5-5

Chapter 5

This ASP displays a list of invoices with the current context company.

Pre-Requisit: 3rd Party invoice table must have a CustomerID equal to Comp_CompanyID

*/%>

<%

// Get the current company ID

var ThisCompany=CRM.GetContextInfo("Company","Comp_CompanyID");

// Call the list block

var Invoices=CRM.GetBlock("Invoice_List");

Invoices.Title="3rd Party Invoice History"

// Display the list for invoices with a customerID of ThisCompany

CRM.AddContent(Invoices.Execute("CustomerID="+ThisCompany));

Response.Write(CRM.GetPage());

%>

Step 5: Create the Invoices Tab
To create a new tab in the company context that links to the Invoices ASP page:

1. Select Administration |Customization |Company | Tabs.
2. Select theCompany tab group hyperlink. The Customize Tabs for Company page is

displayed.
3. Enter Invoices in the Caption field.
4. Select customfile from the Action list.
5. Enter Invoices.asp in the Custom File field.
6. Select theAdd button to include the new tab in the Company tab group, and choose theSave

button.
7. The results can be illustrated for this example by opening a company within CRM, and clicking

on the Invoices tab. A list of invoices for the company is displayed.

Example: Displaying an Individual Invoice from a List
The CRMCustom Jump action functionality can be used to display an individual invoice from a list.
You can create a link from an individual entry in a list to a summary screen of the entry.
The steps involved in linking from the invoice list screen to an invoice detail screen are:

l Step 1: Edit the List object for the Invoices table.
l Step 2: Create a Screen object for Invoices.
l Step 3: Create a Custom Page to display the Screen for an individual Invoice.

Step 1: Edit the List Object for the Invoices Table
To add custom jumps to the Invoices List:

1. Select Administration |Customization | Invoices | Lists.
2. Click on the hyperlink of the Invoice List. TheMaintain List Definition page is displayed.
3. For each field you want linked, set the Hyperlink To field to Custom Jump.
4. Set Custom File to be the name of the ASP page that displays the Invoices screen, in this

case invdetail.asp.
5. In the Custom Id Field, type the name of the field on the Invoices table that uniquely identifies

each record, for example InvoiceID.
6. Choose theSave button.

5-6 Sage CRM

Chapter 5: Database Customization

Step 2: Create a Screen Object for Invoices
To create a screen for displaying individual invoice details:

1. OpenAdministration |Customization | Invoices |Screens.
2. Select theNew button to add a new screen, and edit it to add in the fields from the Invoices

table that are to be shown. For more information refer to How to Create a Screen (page 4-5).
3. Choose theSave button.

Step 3: Create a Custom Page
Use the script below to create a Custom Page to retrieve the screen you just created for individual
invoices. The name of this pagemust be the same as the entry in the Custom File field in Step 1, in
this case, invdetail.asp:

<!-- #Include file = "sagecrm.js" -->

<%now = new Date();%>

<HTML> <BODY>

<% //Return the value of the field used as the hyperlink to this page.

ThisInvoice=Request.QueryString("InvoiceID");

// Create the block object from the screen block created in CRM

InvoiceDetailBlock=CRM.GetBlock('Invoice_Detail');

//Find the record using the QueryString returned above

Record=CRM.FindRecord("Invoices","InvoiceID="+ThisInvoice);

//Pass the record object to the Screen block for execution later.

InvoiceDetailBlock.ArgObj=Record;

Container = CRM.GetBlock("container");

//Add a block to the container

Container.AddBlock(InvoiceDetailBlock);

//Set the buttons to be displayed in the block.

Container.DisplayButton(Button_Default)=false;

//Write container to screen.

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

%>

The results can be illustrated for this example by clicking on a company and selecting the Invoices
tab. The list of invoices for that company displays. The fields that are set up as jumps display in
hypertext link format.
When you click on an invoice number, the screen for that individual invoice is shown, with a Continue
button to return to the list.

Example: Adding New Data Entry and Maintenance Screens
This section describes how to add a new table within CRM to store customer specific information that
can be edited or deleted as required. The example used is a new table called InstallBase to store
information needed after an opportunity has been closed, and before engineers start the
implementation. The new table stores extra information relating to each company.

This example includes the following steps:

l Step 1: Creating the Installed Base table.
l Step 2: Adding the Installed Base tab.
l Step 3: Adding the Installed Base list.
l Step 4: Adding the Installed Base view/edit/delete screen.
l Step 5: Creating the ASP Page(s) needed to display the screens.

l Scenario A: Where there is one record in the new table for each company
l Scenario B: Where there aremultiple records in the new table for each company.

Developer Guide 5-7

Chapter 5

Note: This example relates to a table holding information for a company, but it
works equally well for extra information for a person, case, lead, or opportunity.

Step 1: Create the Installed Base Table

1. From Administration |Advanced Customization | Tables And Databases, select Create
Table to create a new database table in CRM called InstallBase.

2. Complete the fields, making sure you type inst_installbaseid as the ID Field Name, inst_ as
the Column Prefix, and inst_companyId as the Company ID Field.

3. Select Save to save the new table.

Step 2: Add the Installed Base Tab
Once the fields for the Installed Base table have been created in CRM, you need to create a tab to
display the Installed Base details.
To do this:

1. OpenAdministration |Customization |Company | Tabs.
2. Add a tab to the Company tab group to display the Installed Base details.
3. Set the tab Action field to customfile and enter the name to be used for your ASP page in the

Custom File field, in this case installbase.asp.
4. ChooseUpdate and then theSave button.

Step 3: Add the Installed Base List
If there aremultiple records in the new table for each customer, a List object that is used to view all
the Installed Base table details is required.
To do this:

1. OpenAdministration |Customization | InstallBase | Lists.
2. Select New to add a new list called InstallBase, and edit it to add the fields that are to be

shown. You can enable links between individual list items and their summary screens by
creating a Custom Jump on a field of the list item.

To set up a jump on a field:

1. Select the inst_companyid field, and set theHyperlink To Field to Custom Jump.
2. Set theCustom File field to the name of the ASP file that displays an individual item.
3. Set the Custom Id Field to the name of the field in the new table that uniquely identifies each

record.

Step 4: Add the Installed Base View/Edit/Delete Screen
To create a Screen object that can be used to edit the Installed Base table details:

1. OpenAdministration |Customization | InstallBase |Screens.
2. Select New to add a new screen.
3. Customize the new screen to add the fields that you want to display.

For more information on Screen Customization refer to the System Administrator Guide.

5-8 Sage CRM

Chapter 5: Database Customization

Step 5: Create the ASP Page(s) Needed to Display the Screens

Scenario A. Single record in the new table for each company

Create the Custom Page to view/edit installed base records. The name of this page should be the
name specified in the Company tab group.

Start with a sample Entry Group ASP page. Themain body of the ASP page should contain
statements to perform the following tasks:

1. Retrieve the identifier value for the current company and assign it to a variable.
CompanyId=CRM.GetContextInfo("Company","Comp_CompanyId");

2. Create an instance of the Installed Base screen and assign it to a variable.
InstallBase=CRM.GetBlock("Install Base Details");

3. Create a record for the Installed Base record and tell it which record to show. Check if the
record already exists and if not create a new one. Set the title on the block depending on
whether the user is adding or editing.
record=CRM.FindRecord("InstallBase","companyid="+CompanyId);

if (record.eof)

{

record=CRM.CreateRecord("InstallBase");

record("CompanyId")=CompanyId;

InstallBase.Title="New Install Base Details";

}

else

{

InstallBase.Title="Edit Install Base Details";

}

4. Display the screen using the record as the argument.
CRM.AddContent(InstallBase.Execute(record));

Response.Write(CRM.GetPage());

This allows the user to add or edit Installed Base details for each customer by clicking on the
Installed Base tab for a company. The first time the tab is selected a record is added for that
company. After that, when the tab is selected, the record is shown for editing.

The installbase.asp script is displayed below.

<!-- #include file ="sagecrm.js" -->

<%

// Get the Id of the current company

CompanyId=CRM.GetContextInfo("Company","Comp_CompanyId");

// create the Screen Block

InstallBase=CRM.GetBlock("Install Base Details");

//Find the record in the table for this company

record=CRM.FindRecord("InstallBase","Inst_CompanyId="+CompanyId);

if (record.eof)

{

// if the record does not exist then create one and set the company id

record=CRM.CreateRecord("InstallBase");

record("Inst_CompanyId")=CompanyId;

InstallBase.Title="New Install Base Details";

}

Developer Guide 5-9

Chapter 5

else

{

InstallBase.Title="Edit Install Base Details";

}

if (CRM.Mode <= 1)

{

CRM.Mode=1;

}

// Display the record

CRM.AddContent(InstallBase.Execute(record));

Response.Write(CRM.GetPage());

%>

Scenario B. Multiple records in the new table for each customer

This requires two custom pages, one to view a list of all the records and the other to jump to individual
records.
Create a first Custom Page to view a list of all the records, the name of this page should be the name
specified in the tab group for Company.
Start with a sample Entry Group ASP page(see example above).Themain block of the ASP page
should contain statements to perform the following tasks:

1. Retrieve the identifying value for the current Company and assign it to a variable:
ThisCompany=CRM.GetContextInfo("Company","Comp_CompanyId");

2. Create a block for the Installed Base List and assign it to a variable. Note the name of the list
is the name of the list created in the step above.
InstallBase=CRM.GetBlock("installbaselist");

3. Write the list to the screen by executing the List Block, telling it to only show records for this
company:
CRM.AddContent(InstallBase.Execute("Inst_CompanyId="+ThisCompany));

4. Finally, add a New button to the screen to allow new records to be added. This calls another
ASP page.
CRM.AddContent(CRM.Button("New","new.gif",CRM.Url("InstallBaseEdit.asp")));

Response.Write(CRM.GetPage());

Create a second Custom Page to jump to view/edit/delete individual records. The name of this page
should be the name specified in the 'Custom Action File' section of the Installed Base list.
Start with a sample Entry Group ASP page. Themain block of the ASP page should contain
statements to perform the following tasks:

1. Retrieve the Id value of the record that is to be viewed from theQuery string.
ThisInstallBase=Request.QueryString("Inst_InstallBaseId");

2. Create a block for the Installed Base Screen and assign it to a variable.
InstallBaseItem=CRM.GetBlock("InstallBaseDetailsBox");

3. Turn on the Delete button on the block to allow existing records to be deleted:
DisplayButton(Button_Delete)=true;

5-10 Sage CRM

Chapter 5: Database Customization

4. Turn on the Continue button to allow users to return to the list when they are finished:
DisplayButton(Button_Continue)=true;

5. Check if this is an existing record or if a new record has to be created. Create the Record
object if required. Note that if it is a new record, the exact Company Idmust be set on it and it
must go straight into Edit mode:
if (!Defined(ThisInstallBase))

{

CompanyId=CRM.GetContextInfo("Company","Comp_CompanyId");

InstallBaseRecord=CRM.CreateRecord("InstallBase");

InstallBaseRecord("Inst_CompanyId")=CompanyId;

}

if (CRM.Mode <= Edit)

{

CRM.Mode=Edit;

}

else

{

InstallBaseRecord=CRM.FindRecord("InstallBase","Inst_

InstallBaseId="+ThisInstallBase);

}

6. Display the block, passing in the Record object. Note that the edit/delete/add functionality is
handled by the block internally.
To view the results, within CRM, go to a company and select the Installed Base tab. The list of
Installed Base records for that company are shown. The fields that are set up as jumps are
underlined. When you click on a jump, the screen for that individual installed base record is
shown and can be edited or deleted. New records may be added from the list screen by
clicking on the New button.

The Installbaselist.asp script is displayed below

<!-- #include file ="sagecrm.js" -->

<% // Get the value of the current Company ID

ThisCompany=CRM.GetContextInfo("Company","Comp_CompanyId");

// create the List Block

InstallBase=CRM.GetBlock("installbaselist");

// display the List

CRM.AddContent(InstallBase.Execute("Inst_CompanyId="+ThisCompany));

// add 'New' button to allow user to add new records for this company

CRM.AddContent(CRM.Button("New","new.gif",CRM.Url("InstallBaseEdit.asp")));

Response.Write(CRM.GetPage());

%>

Reporting on Data in the Installed Base Records
Follow these steps to create a report on the Installed Base table.
To report on the Installed Base table:

1. Create a view for the external table from Administration |Customization | Installed Base |
Views.

2. Create a new report category for Installed Base fromMain Menu |Reports |New Report
Category.

3. Create a report in the new category, ensuring that you base it on the Installed Base view. For
more information on creating reports, please refer to the System Administrator Guide.

Developer Guide 5-11

Chapter 5

The company ID field on the Installed Base table that just holds the Id (that is, an integer value) can
be set to show the company name in the report by setting its Entry Type to be a Search Select, using
the Company entity.

Note: You can create a view that links the Installed Base table with, for example, the
Company table, so that more fields are available on the report.

Table and Entity Scripts and Functions
Introduction to Table and Entity Level Scripts
Table and Entity Level Scripts are an alternativemethod of creating SQL triggers that can be
performed within the system. Table Level Scripts are executed when a record is inserted, updated, or
deleted on a specified table in CRM. Entity Level Scripts are executed when an entity is updated,
inserted, or deleted.
The Extensibility Module is required to create and customize Table and Entity Level Scripts in
Administration | Customization | <Entity> | TableScripts.
The benefits of using Table and Entity Level Scripts instead of SQL triggers are:

l Improved database concurrency: The scripts are decoupled from the tables on which they are
acting.

l Easier debugging: The ErrorStr statement can be included to display diagnostic and handled
error messages. If an unhandled script error occurs, the system displays the script name, line
number, and the error message.

You access the Table Level Scripting and the Entity Level Scripting functionality from within
Administration | Customization | <Entity> | TableScripts.
Both types of script can be executed on system tables or on any tables that are connected to the
system. Each script must have the four functions InsertRecord(), PostInsertRecord(),
UpdateRecord(), and DeleteRecord() defined. These functions are automatically included in a
template when you create a new script.
The following table describes each of the fields on the Table Script page. Refer to this table when
creating any of the four script types: Table Level, Detached Table Level, Entity Level, or Entity Level
with Rollback.

Field Description

Name A name to identify the script.

Windows
User as
Domain/
User
(Optional)

If you want to run the script as a different user, enter the user name here.

User
Password

Enter the above user’s password here.

Script Type Select the type of script you want to create. The options are Table Level,
Detached Table Level, Entity Level, and Entity Level with Rollback.

View This field is applicable when creating Entity Level Scripts only.
Enter the view from which fields are available in the script. This must be
relevant to the current entity. If no view is entered, the default Entity

5-12 Sage CRM

Chapter 5: Database Customization

Field Description

View for that entity is used:
Company: vEntityCompany
Person: vEntityPerson
E-mail: vEntityPhoneEmailPerson,
vEntityPhoneEmailCompany
Address: vEntityAddress

Order If there is more than one script for a table, this field can be used to
specify the order of the scripts.

On error, only
display the
default error
message

Select this check box to hide the error details from the user. You can
enter an alternative error message to be displayed in the Default Error
Message field. If you check this check box and do not enter a default
error message, no errors are reported to the user.

On error,
retry the
script after
delay

Select this check box to set a script to retry after a defined amount of
time when an error occurs. The script is then scheduled to re-run in a few
minutes and continues to be rescheduled until it runs successfully. This
option is useful for situations where an external resource isn't available
but is expected to become available in the future. Every time the script
is rescheduled the amount of time until CRM retries is increased.

On
disconnected
clients, delay
execution
until the
script can be
run on the
server

Select this check box if you are running a script that requires an
external resource that might not be available on a disconnected client.
The script is scheduled for execution on the server when the user next
performs a synchronization.
Note: Selecting this option transforms the script into a Detached Table
Level script when it is run as a result of Solo client changes. This
means that it is not run immediately on the client synch, but is subject
to the normal detached table level script delay (usually just a few
minutes). Also, it is not suitable where the script type is Entity Level
With Rollback as it cannot handle the rollback feature when run on the
server.

Default Error
Message

Enter the text of themessage that you wish to be displayed to the user
when an error occurs. This is only displayed if any of the On Error....
check boxes are selected.

Logging
Level

Select from the list the level of diagnostic information that is displayed
for a script when you click the Show Log button after creating a new
script.
Off: Logging switched off. No entry in Log table.
Low: Low level diagnostic information in Log table.
Medium: Medium level diagnostic information in Log table.
High: High level diagnostic information in Log table.
An example of setting a logging level and using the Show Log button is
described later in this section.

Table Level
Script

This is where you enter the actual Table or Entity Level script.

Developer Guide 5-13

Chapter 5

Creating a Table Level Script
Table Level scripts are executed when a record is inserted, updated, or deleted on the specified table.
Table Level scripts additionally enable you to reference CRM objects and allow you to access
external applications, such as Microsoft Excel. For example, you could use a Table Level Script to
write transaction logs of sensitive information to specific columns of a text file.
To create a Table Level script:

1. OpenAdministration |Customization | <Entity>, and select the TableScripts tab.
2. Complete the fields on the Table Script page using the table provided in the previous section,

making sure you select Table Level from the Script Type list.
3. Enter the script in the Table Level Script field in the InsertRecord(), PostInsertRecord(),

UpdateRecord(), or DeleteRecord() section of the field, depending on the type of script you
want to run.

4. Choose theSave button.
5. The script is run when you create a record, after you create a record, when you update a

record, or when you delete a record, depending on what type of script you entered in the Table
Script field. Once the script is run, you can use theShow Log button to view a log of
diagnostic information about the script. This is especially useful if you run a detached script, or
if you selected theOn Disconnected Clients, Delay Execution Until the Script Can Be
Run On The Server check box and want to check that the script was successful. You can
also use it to view more precise diagnostic information as to why a script didn't work.

6. To view the logging information, select the script you created from the list of existing scripts.
7. Select theShow Log button. The log is displayed in a new browser window.
8. Diagnostic information is displayed according to the logging level you set. This can be

changed each time the script is run. You use theClose Window button to return to themain
screen and theClear Log button to clear the log of entries.

Detached Table Level Scripts
Detached Table Level Scripts are created in the sameway as Table Level scripts, except you select
Detached Table Level from the Script Type list when completing the Table Script details. Unlike
Table Level scripts, Detached Table Level scripts are not run immediately but within a predefined
amount of time. This enables the system to store a queue of scripts that need to run, and it means
that a user does not need to wait for a script to complete.
If there are no other scripts queued at the server the script is run in amatter of minutes. This type of
script is useful when the execution of the script is likely to be time consuming and you don't want the
user to have to wait. For example, users do not see errors as they happen. The Log file must be
viewed for any diagnostic errors.

Creating an Entity Level Script
Entity Level scripts and Entity Level with Rollback scripts are executed when an entity is inserted,
updated, or deleted. Entity Level Scripts should be used:

l When the action is dependent on the whole entity-for example, you want to do something
when a whole Company is inserted, not just when a record is added to the Company table.

l Entity Level with Rollback scripts can be used when you want to stop the action happening if
there is a validation error or other error with the script.

The following entities can have Entity Level Scripts: Company, Person, E-mail, and Address. The
scripts are invoked from only the following standard CRM screens when the final Save is clicked.

5-14 Sage CRM

Chapter 5: Database Customization

Screen EntityScript Function

New Company Company InsertRecord()

Change Company Company UpdateRecord()

Delete Company Company DeleteRecord()

New Person Person InsertRecord()

Change Person Person UpdateRecord()

Delete Person Person DeleteRecord()

Edit Phone/E-mail Email UpdateRecord()

New Address Address InsertRecord()

Edit Address Address UpdateRecord()

Delete Address Address DeleteRecord()

Entity Level Scripts are created in the sameway as Table Level Scripts, except you select Entity
Level or Entity Level with Rollback from the Script Type list when completing the Table Script details.
For example, with an InsertRecord Entity Level script attached to the company entity, each time you
create a new company, the InsertRecord() function is executed after all the normal company updates
have been done (this includes inserts into many tables, for example: address, address_link, phone,
email, person, person_link) but before the final commit has been done.
If there is an error while executing the script and the script type is Entity Level with Rollback, all the
changes are undone and the company is not inserted. The error is shown on the insert screen.
You enter entity level scripts in the same template as table level scripts.

Example: UpdateRecord in an Entity Level Script
The following example describes the use of the UpdateRecord() function in an Entity Level script. The
script is designed to enter a record in an external table called Invoices, which resides on a third-party
database called External, when the company type is changed from Prospect to Customer. The
External database and the Invoices table are not supplied with the sample data in CRM.
To create the script:

1. Select Administration |Customization |Company | TableScripts.
2. Select theNew button.
3. Complete the fields on the Table Script page, ensuring that you select Entity Level from the

Script Type list.
4. Enter the following script in the Table Script field underneath the function UpdateRecord()

entry.
Please refer to Developer Help files for code sample

5. Choose theSave button.
This script is triggered when the company entity is updated. When you change a company type from
Prospect to Customer a record is created in the external Invoices table.

Developer Guide 5-15

Chapter 5

Example: InsertRecord
The following example describes the use of the InsertRecord() function in a Table Level script. The
script is designed to assign any new cases to the account manager of the selected company when
the case is created. Workflow for Cases needs to be disabled before you try this example.
To create the script:

1. Select Administration |Customization |Cases | TableScripts.
2. Select theNew button.
3. Complete the fields on the Table Script page, ensuring that you select Table Level from the

Script Type list.
4. Enter the following script in the Table Script field underneath the function InsertRecord() entry.

Please refer to Developer Help files for code sample

5. Choose theSave button.
6. Find a company and create a new case for it, but do not assign the case to a user.
7. The company account manager, in this example Brian Little, is automatically assigned to the

case when you save the case.

Example: PostInsertRecord
You can include the record identifier generated in the InsertRecord() function in the
PostInsertRecord() function of the same script. The following example describes the use of the
PostInsertRecord() function in a Table Level script to send a communication suggesting a follow-up
call to the Company account manager when a new case is created.
Note: PostInsertRecord is mainly used when you want to insert or update other records using the
new identity ID that has been created for the record that was just inserted. You cannot update the
current record in the PostInsertRecordmethod as it has already been saved at that point. You can
read values from the Values collection, however any changes to the Values collection will not take
effect.
To create the script:

1. Open the Table Level Script you created above.
2. Enter the following script in the Table Script field underneath the function PostInsertRecord()

entry.
Please refer to Developer Help files for code sample

3. Choose theSave button.
To view the results, create a new case and note the user who it is assigned to. When you do
this, log on at that user and open the Calendar/Tasks list for that user. The new
communication is listed.

Example: UpdateRecord
The following example describes the use of the UpdateRecord() function in a Table Level Script. The
script is designed to set all opportunities associated with a company to Stage Sale Closed, when the
user changes the Status to Archive.
To create the script:

1. Select Administration |Customization |Company | TableScripts.
2. Select theNew button.

5-16 Sage CRM

Chapter 5: Database Customization

3. Complete the fields on the Table Script page, ensuring that you select Table Level from the
Script Type list.

4. Enter the following script in the Table Script field underneath the function UpdateRecord()
entry.
Please refer to Developer Help files for code sample

5. Choose theSave button.
When you open a Company Summary, change the Status to Archive, and click the
Opportunities tab, the stage of every opportunity related to the company is set to Sale
Closed.

Example: DeleteRecord
The following example describes the use of the DeleteRecord() function in a Table Level Script. The
script is designed to check whether there are any outstanding leads associated with a person, if the
person record is deleted. If there are any outstanding leads, amessage is displayed.
To create the script:

1. Select Administration |Customization |Person | TableScripts.
2. Select theNew button.
3. Complete the fields on the Table Script page, ensuring that you select Table Level from the

Script Type list.
4. Enter the following script in the Table Script field underneath the function DeleteRecord()

entry.
Please refer to Developer Help files for code sample

5. Choose theSave button.
To view the results, find a person who has an associated lead and delete the person record.
The warningmessage is displayed.

Advanced Customization Wizard

Creating a NewMain Entity
To create a new main entity:

1. Select Administration |Customization |Component Manager. The Components tab is
displayed. If there are any components available to install, they are displayed in the Available
Components list. If not, a message is displayed to inform you that there are no components in
the INF directory—this is the directory on the server where components are stored. In addition,
a panel called Add Component is displayed.

2. Select theBrowse button and navigate to the location where you saved the Advanced
CustomizationWizard ZIP file.

3. Select the file and select Open from theWindows dialog box. The path to the file is displayed
on the Add Component panel.

4. Select theUpload New Component button. When you do this, the component becomes
available on the Available Components list. In the background, the Advanced Customization
Wizard ZIP file is unzipped and uploaded to the INF directory on the server. If an INF directory
doesn't already exist, it is created at this point.

Developer Guide 5-17

Chapter 5

5. Select the component and click on the Install Component button. The Parameter Info screen
is displayed, with a number of fields that you complete or select in order to name the new
entity and create associations between it and the system.

6. Complete the fields on theParameter Info screen. See Advanced CustomizationWizard
Parameters (page 5-18) for a detailed description of each field.

7. Select the Install Component button. Progress messages are displayed, and the Continue
button becomes available when the new entity is fully created. The following are created as
standard:

l Name and status fields.
l Search, entry, summary and top content screens.
l A grid for the new entity.
l A tab group with a tab that runs a custom summary screen.

Other screen elements created depend on the parameters you specified in Step 6. Refer to the
Advanced CustomizationWizard Parameters (page 5-18) for more details.

8. Select theContinue button. You are returned to the Components tab. The Advanced
CustomizationWizard component is listed in the Installed Components panel on this tab.

Note: The Advanced CustomizationWizard component also remains listed on the
Available Components list at the top of the screen. This enables you to create as many
new entities as you require by selecting the component and following the installation
steps above.

You can now view the new entity you created, and you can customize it. Please refer to Customizing
a New Main Entity (page 5-25) for more information.

Advanced Customization Wizard Parameters
The following Table describes the fields on the Parameter Info screen.

Field Description

Entity Name Enter the name of the new entity. This is the name of the database
table for the entity, as well as the caption for the entity that will be
used throughout CRM to identify it. The namemust be less than 27
characters in length andmust not be the same name as an existing
table in the CRM database.

Entity Column
Prefix

Enter the letter string to be used as a prefix to the names of the
columns in the new entity’s database table. The column prefix must
be four characters in length. There is no need to include an
underscore. The prefix must follow the particular server’s rules for
identifiers. For example, when working on an SQL Server, the prefix
must follow SQL Server’s identifier rules.

TagWith
Component
Name

This allows you to script out and further customize new entities that
you create.
Once you type an entity name in the Entity Name field, the value in
the TagWith Component Name field is set to <EntityName>_
Component and a new component (with the same name) is added to
your list of Existing Components.

5-18 Sage CRM

Chapter 5: Database Customization

Field Description

Having created a new entity, you can select the new component
from the Existing Components list and:
Click on the Preview Script button to view all of the changes
involved in creating the new entity.

Set <EntityName>_Component as the currently recording
component and thenmake further customizations to the entity you
created.
Script out the entire customization (entity creation and further
customizations).

Refer to Scripting Customizations (page 6-4) for more information on
scripting out components.

Add ToMy CRM Select this check box to create a custom list and a custom tab for
theMy CRMwork area. This enables you to view a list of all the new
entity records that are associated with a particular user.

Add To Find Select this check box to create a custom search entry screen and a
corresponding search results list. These allow the new entity’s
records to be searched for using the Find functionality in CRM.

Add To Team
CRM

Select this check box to create a custom list, an asp page that
displays the list, and a custom tab for the Team CRMwork area.
This enables you to view a list of all new entity records associated
with a particular Team.

Has Companies Select this check box to create a company tab and to add a
corresponding custom company list to the tab group. This enables
you to view a list of associated companies for all new entity records.
It also enables you to link existing companies to the new entity via a
Link button.
If you want to set up deduplication for companies in this scenario,
refer to Enabling Company and Person Deduplication (page 5-21).

Has Accounts Displayed only if Integration is set up. Select this check box to
create an account tab and to add a corresponding custom account
list to the tab group. This enables you to view a list of associated
accounts for all new entity records. It also enables you to link
existing accounts to the new entity via a Link button.

Developer Guide 5-19

Chapter 5

Field Description

Has People Select this check box to create a people tab and to add a
corresponding custom people list to the tab group. This enables you
to view a list of all associated people for all new entity records. It
also enables you to link existing people to the new entity via a Link
button.
If you want to set up deduplication for people in this scenario, refer
to Enabling Company and Person Deduplication (page 5-21).

Has
Opportunities

Select this check box to create an opportunities tab and to add a
corresponding custom opportunities list to the tab group. This allows
you to see all the associated opportunities for all new entity records.

Has Leads Select this check box to create a lead tab and to add a corresponding
custom leads list to the tab group. This allows you to view all the
associated leads for all new entity records.

Has Cases Select this check box to create a cases tab and to add a
corresponding custom cases list to the tab group. This allows you to
view associated cases for all new entity records.

Has
Communications

Select this check box to create a communications tab and to add a
corresponding custom communications list to the tab group. This
allows you to view associated communications for all entity records.

Workflow Select this check box to create a workflow for the custom entity.
Selecting the check box also enables default workflow rules for the
new entity.

Deduplication Selecting this check box creates a deduplication screen for the new
entity.
Deduplication rules can then be set up in CRM.
If the new entity "Has People" or "Has Companies" and you want to
set up deduplication screens for them, you need to refer to Enabling
Company and Person Deduplication (page 5-21).

For Dot Net Selecting this check box creates an entity for which you can write a
.Net module instead of using ASP pages. The entity is created with
metadata in the usual way but as ASP pages are not created, you
need to use the .NET DLL to customize the entity.

Has Library Selecting this check box creates a library tab and adds a
corresponding custom library list to the tab group. This enables you
to view all associated library entries for all new entity records.

Has Workflow
Progress

Selecting this check box creates a progress table for the custom
entity table. It also provides the ability to add progress notes for
custom entity records.

Owned By
Companies

Selecting this check box adds a custom tab to the Company tab
group that displays a list of all the associated new entity records for
a particular company.

5-20 Sage CRM

Chapter 5: Database Customization

Field Description

Owned By
Accounts

Displayed only if Integration is set up. Selecting this check box adds
a custom tab to the Account tab group that displays a list of all the
associated new entity records for a particular account.

Owned By
Orders

Displayed only if Integration is set up. Selecting this check box adds
a custom tab to the Orders tab group that displays a list of all the
associated new entity records for a particular order.

Owned By
Quotes

Displayed only if Integration is set up. Selecting this check box adds
a custom tab to the Quotes tab group that displays a list of all the
associated new entity records for a particular quote.

Owned By
People

Selecting this check box adds a custom tab to the People tab group
that displays a list of all the associated new entity records for a
person.

Owned By
Opportunities

Selecting this check box adds a custom tab to the Opportunities tab
group that displays a list of all the associated new entity records for
an opportunity.

Owned By Leads Selecting this tab adds a custom tab to the Leads tab group that
displays a list of all the associated new entity records for a lead.

Owned By
Cases

Selecting this check box adds a custom tab to the Cases tab group
that displays a list of associated new entity records for a case.

Allow Web
Service Access

Selecting this check box ensures that the new entity is enabled for
web services. Please refer toWeb Services (page 9-1) for more
information.

Read-only
SData

Selecting this check box ensures that the new entity is enabled for
SData. Please refer to SData Read-only (page 10-1) for more
information.

Enabling Company and Person Deduplication
If the entity you created "has companies" or "has people", and you want a Deduplication page to be
displayed when you create a Company or Person from within the context of the new entity, you need
to edit the <entityName>Company.asp page or the <EntityName>Person.asp page.
To enable deduplication if the entity "has" Companies, open the <entityName>Company.asp and
change the action from 140 to 1200.
Alternatively, to enable deduplication if the entity "has" People, open the <EntityName>Person.asp
and change the action from 141 to 1201.
For example, let's say you created a new company that "has" People. You want the Person
deduplication page to be displayed when you create a new Person from within the Project context.
To do enable deduplication:

1. Change the script in the <ENTITYNAME>Person.asp from
CRM.URL(141)+"&Key-1="+iKey_

CustomEntity+"&PrevCustomURL="+List.prevURL+"&E=Accounts", 'Person', 'insert'));

Developer Guide 5-21

Chapter 5

to

CRM.URL(1201)+"&Key-1="+iKey_

CustomEntity+"&PrevCustomURL="+List.prevURL+"&E=Accounts", 'Person', 'insert'));

1. Save the file.
When you select the New action button to create a new Person within a Project record, the
Person Deduplication page is displayed.

Custom Files and Metadata
Certain specific custom files andmetadata changes are created by the Advanced Customization
Wizard. These are detailed below.

Custom Files
A number of custom files are generated for the new entity depending on the selections youmade on
the Parameter info screen when you were creating it. The custom pages are stored automatically in:
…Program Files\Sage\CRM\<installname>\WWWRoot\CustomPages\<Entity Name>
The table below lists all possible custom files that can be created and gives a description of each.

File Name Description

<Company><EntityName>.asp This page displays the list of all new entity
records owned by a particular entity e.g. company
(if Owned By Companies was selected on the
Parameter Info screen). A similar file can be
generated for:
People
Leads
Opportunities
Cases
Accounts
Quotes
Orders

<EntityName><Person>.asp This page lists all of the new entity's people (if
Has People was checked). Depending on your
selections, a similar file can be created for:
Communications
Case
Lead
Opportunity
Company
Library
Accounts

<EntityName>Channel.asp This page displays the list of all of the new entity
records associated with a Team. The list is
displayed on the Team CRM area (if Add To Team
CRMwas selected on the Parameter Info screen.

<EntityName>Summary.asp The summary page for new entity records.

5-22 Sage CRM

Chapter 5: Database Customization

File Name Description

<EntityName>Find.asp This page allows you to search for the new entity
records (if Add To Find was selected on the
Parameter Info screen).

<EntityName>ToDo.asp This page displays the list of all the new entity
records associated with a user. The list is
displayed on theMy CRM area (if Add ToMy
CRMwas selected on the Parameter Info
Screen).

<EntityName>Dedupe.asp This page displays the custom dedupe screen if
Deduplication was selected on the Parameter Info
screen. If not, it redirects you to the
<EntityName>New.asp

<EntityName>Conflict.asp This page lists all of the conflicts that your dedupe
entrygroup found.

<EntityName>Library.asp Enables library items to be linked to the new
entity.

<EntityName><Company>Link.asp Enables you to create links between the entity
records and other companies or people.

<EntityName>New.asp This page allows you to create new entity records.

<EntityName>WF.asp This page allows you to create aWorkflow for the
new entity.

<EntityName>ProgressList.asp Enables you to progress the new entity record.

Metadata
The followingmetadatamay be created in CRM, depending on the selections youmade on the
Parameter Info screen.
You can view these in EnterpriseManager, for example, in the Custom_Tables table, and you can
view them in CRM via Administration | Customization. The table below lists themetadata that is
created.

Metadata Description

<entityname>SearchBox The entry screen used for search selects and finds on
new entities.

<entityname>NewEntry The entry screen used to create new entity records.

<entityname>BoxDedupe The deduplication screen for the custom entity (if
Deduplication is selected on the Parameter Info
screen).

<entityname>TopContent The context area for the new entity records.

Developer Guide 5-23

Chapter 5

Metadata Description

<entityname>SummaryScreen The summary screen for new entity records

<entityname>SearchBox The search screen for finding new entity records.

<entityname>Grid The grid used for search selects and finds on new
entity records.

<entityname>UsersGrid The grid used to list new entity records for a particular
User.

<entityname>ChannelGrid The grid used to list new entity records for a particular
Team.

MainEntity<entityname>Grid The grid used to list new entity records for a particular
main entity (if Owned By <MainEntity>, is selected on
the Parameter Info screen).

<entityname> The tab group for the new entity.

Making Custom Entities Available for Reassignment
Administrators and infomanagers can reassign entity records associated with one user to another
user or team of users.
To access the screen for reassigning user records:

1. Select Administration |Users |Users.
2. Use the Find screen to locate a user and click on that user’s name. The User Details page is

displayed. There are three buttons available for disabling users and reassigning their records:
Reassign; Reassign and Disable; andDisable.

3. Click on theReassign button. The Reassign User Records page is displayed. You can see
that it is also possible to reassign records from the new custom entity, Project. In addition, you
can filter which records to reassign by selecting them according to their status. In this
example, only projects that have their status flagged to "Not Started" will be reassigned.

After you create a custom entity, it will appear automatically in the Reassign User Records page. In
addition, the field used as a filter, Status ("proj_status"), is added by default to the new table. The only
task facing the administrator is to add the necessary options to the Status selection field. In this
example, they are "Not Started," "In Progress," and "Complete".
To specify options for the custom entity’s Status field:

1. Select Administration |Customization | <EntityName>. In this case, click on the name of
the Project entity.

2. Select the Fields tab if it is not already open.
3. In the row for Status, click on the hyperlink indicating the field’s type, Selection. TheMaintain

Lookup Selection for Status page is displayed.
4. Enter the appropriate values in the Add Translation and Code fields and click on the Add

button. In this instance, you would specify the third option to appear in the down-down list (and
in the list appearing on Reassign record pages) by typingComplete into the Add Translation
field and enteringStatus 3 as a code. For more information, refer to the chapter "Field
Customization" in theSystem Administrator Guide.

5-24 Sage CRM

Chapter 5: Database Customization

Customizing a NewMain Entity
This section explains how to:

l Customize a new entity that has been created using the Advanced CustomizationWizard.
l Change the new entity logo.
l Add a report view to an entity.

Customizing a New Entity
You can customize screens, fields, lists, and tabs created by the Advanced CustomizationWizard in
the sameway as you customize screens, fields, and lists for a default CRM entity, such as a
Company, or a Person.
To customize a new entity:

1. Click on Administration | Customization.
2. Select the new entity, for example Project, from the Customization home page.

Note: Depending on the options you chose on the Parameter Info screen an entity
progress table may be available too, for example ProjectProgress. This can be
customized in the sameway as a typical Progress table.

The Customize Fields tab for Project is displayed. The screen displays all the standard CRM
fields that have automatically been added to the entity database table.
You can customize the new entity's Fields, Screens, Lists, Tabs, and Views in the normal
way. Please refer to theSystem Administrator Guide for more information.

Changing the Entity Logos
Two images (a small one and a large one) are automatically used as the logo for all new entities you
create. They are named according to the entity name you provide—<EntityName>.gif and small_
<EntityName.gif>—when creating the entity, and they are copied to the following location:
…Program Files\Sage\CRM\<installname>\WWWRoot\Img\Icons
You can change the logos by overwriting the default ones if you wish.

Adding a Report View to an Entity
You can create a view to specify tables and columns from which a report can be drawn. A view can
be created for any entity.
For example, youmight want to create a new report view for the Project entity. This view will show
cases associated with projects, who the cases were logged by, case status, case priority, and case
description.
To create a new report view:

1. Select Administration |Customization |Project. The entity context that you select should
correspond to themain database table you reference in the view. The Fields tab provides you
with the names of the columns that can be added from the table of the entity you have
selected.
In addition to the fields shown in the interface, each table has a hidden unique identifier that is
used for the SQL joins.

Table Unique ID

Project proj_projectid

Cases case_caseid

Developer Guide 5-25

Chapter 5

2. Select theViews tab.
3. Click on theNew button. The New Views page is displayed.
4. Type in the View Name

Note: Name the view starting with a single "v", with a single word, and with no
spacing, for example, vProjectCaseView. The View Script field is automatically
populated with the start of the script.

5. Select theReports View check box. This makes the view available when creating a new
report.

6. Type a short description of the view in the Description field.
7. Type a translation for the view in the Translation field. This is what the user will see on the

screen when the view is selected from the drop-down list.
8. Type in the SQL for the new view.

CREATE VIEW vProjectCaseView

AS

SELECT proj_name, case_caseid, case_openedby, case_priority, case_status, case_

description

FROM PROJECT

INNER JOIN cases

ON proj_projectid = case_projectid

SQL script for the new report view

The columns in the SELECT statement will be the columns available in the report.

9. Select theSave button. The new view will now be available in the Source View drop-down list
on the Report Options, Step 1 of 2 page when you are creating a new report.

Advanced Customization Wizard Example
Creating a New Entity called Project
This example shows how to create a new entity with the following features:

l The entity name is Project.
l The column prefix for the new entity is "proj".
l The new Project entity is owned by the Company entity.
l It can have People and Cases associated with it.
l It is available as a tab in theMy CRM and Team CRMwork areas.
l Individual Projects can be found by selecting the Findmenu button.
l Workflow andWorkflow Progress screens are available for Projects.

Before starting, ensure that the Advanced CustomizationWizard is installed in Component Manager
as described in Creating a New Main Entity (page 5-17).

To create the new entity:

1. Select theComponents tab.
2. Highlight theMain Entity Wizard component from the Available Components list, and select

the Install Component button.
3. When the Parameter Info screen is displayed, complete the fields as follows:

5-26 Sage CRM

Chapter 5: Database Customization

Parameter Info screen

In the Entity Name field, you add the name of the custom entity, in this caseProject. The Tag
With Component Name field automatically displays the entity namewith the "_Component"
suffix appended. In this example, the field displays "Project_Component." In the Entity
Column, enter the name of the prefix that will be used to identify fields in CRM. For example,
the Project entity will probably feature information about a project manager, the name of whom
could be stored in a field called "proj_manager." Note: as previously explained, the system
adds the required underscore ("_") character by default, so the admin should enter only the
prefix name. In this instance, type proj.

4. Select the Install Component button.
5. When the component is installed and the new entity is created, you can see how your

selections on the Parameter Info screen translate to CRM by taking a look at the following
areas in CRM and the CRM database.

l The entity name is Project—a new database table called Project is created.
l The new entity (Project) becomes available from the Customization home page.
l The entity name is Project—a new database table called Project is created.
l The column prefix for the new entity is "proj". The standard fields created for the new

entity are prefixed with "proj_".
l The new Project entity is owned by the Company entity. Each new Project you create

must be associated with a company.
l A Project record can have People and Cases associated with it.
l The new entity is available as a tab on theMy CRM and Team CRMwork areas.
l Individual Project records can be searched for using the Findmainmenu option.
l You can create a Saved Search for projects.
l Workflow is available for Projects.
l A Project Progress secondary entity is created.

Custom files andmeta data created are discussed in Custom Files andMetadata (page 5-22).

Developer Guide 5-27

Chapter 6: Component Manager

In this chapter you will learn how to:

l Get an overview of the component manager.
l Record customizations.
l Change the current component.
l Script customizations.
l Script multi-stage customizations.
l Script workflows.
l Save a component.
l Install a component.
l Understand advanced component options.
l Modify component manager scripts.

Introduction to Component Manager
Component Manager allows customizations made on one CRM system to be saved and transferred
to another CRM system. It enables CRM developers to package and reuse implementation-specific
customizations in future implementations.

Recording
Recording Customizations (page 6-2)
Advanced Component Options (page 6-9)

Scripting
"Scripting" is the term used to describe the process of generating a set of script files from a particular
component. See Scripting Customizations (page 6-4) for full details. Advanced Component Options
offers an alternative way to script components (see Advanced Component Options (page 6-9)).

Installing
When a scripted component is installed to a second CRM system all of the customizations recorded
in the script are copied to the second system. See Installing a Component (page 6-7) for more
information.

What Types of Customizations can be Recorded?
All changes made in the Administration | Customization section of CRM can be recorded and scripted
using the Component Manager. Specifically, you can use the Component Manager to record and
script:

l Field Customizations
l Field Security where the update applies to "Everyone"
l Screen Customizations-including Field Level Scripting and Custom Content
l View Customizations
l List Customizations
l Tab Customizations - including SystemMenus andMenu Buttons

Developer Guide 6-1

Chapter 6

l Block Customizations - including Dashboard blocks
l TableScript Customizations
l Translations-including inline translationmode, field customizationmethod and translations list

method
l Reports (creation of new reports andmodification of existing ones)
l Most Workflow Customizations. See ScriptingWorkflows (page 6-6).
l Button Groups
l Table And Database connections
l Interactive Dashboards. Note: Only "unassigned" templates should be shared between

systems, as the users and teams will differ in different systems.
Component Manager only records customizations. It does not record configuration information, or
data, and it does not record some other specific customizations. For example the following are not
recorded:

l Field Security other than where the update applies to "Everyone"
l Field deletions
l Products
l Currencies
l Configuration settings
l User data
l Workflow Escalation Rules
l Territory changes
l Related entities
l Security profiles

Customization script files, such as ASP pages, will be included automatically if they are directly
referred to (for example by a newly created tab). However when an ASP page is updated, or when a
file that is indirectly referred-to is added (for example an "include file" in an ASP page), then these
files must bemanually copied to the component folder. See Scripting Customizations (page 6-4) for
more information.

Recording Customizations
Customizations made to your CRM system can be recorded as a Component and then transferred to
another CRM System. When Component Manager is started, customizations are recorded to the
Current Component (see below). When Component Manager is stopped customizations are not
recorded.

The Component Details Screen
The Component Details screen contains the options for selecting and recording components. To open
the Component Details screen:

1. OpenAdministration |Customization |Component Manager.
2. Select theComponent Details tab.

The Component Details tab has two panels:

l Current Component. This panel displays details of the current component. All the
customization changes youmake are saved to the current component unless you create a
new component and set it as the current component. The default component name for the

6-2 Sage CRM

Chapter 6: Component Manager

current component is "Changed".
l Existing Components. This panel lists all existing components on the server. These include

components that have been installed, components available for installation, as well as
components you created.

Starting Component Manager

1. On the Component Details tab, click theNew button.

If you are working on an implementation where you are likely to createmore than
one component, you should always make sure that you script the current
component before you start creating a new one. Otherwise, you risk overwriting
customization changes you recorded previously. Please refer to the Scripting
Customizations (page 6-4) page.

2. Type the component name in theComponent Name field, and type a description in the
Description text box. The "Set To BeCurrent Component" check box is select by default.
This means that the newly created component will start recording immediately.

3. Click theSave button. The component details are displayed in the Currently Recording
Component panel, as the component is now the current component. In addition, the
component is displayed in the list of Existing Components.

Once the Current Component is set:

l The Component Manager automatically records changes youmake and it associates the
changes with the current component. Please refer Introduction to Component Manager (page
6-1) for more details.

l On all customization screens (for example when adding a new field or modifying a list) you will
see a blue banner with the text:

This customization will be labeled with Component Name "[Name]"

This allows you to verify that the changes you aremaking are being recorded to the correct
component.

l The Component continues to record changes against the current component until you do one
of the following:
- Stop Component Manager.
- Set a different component to be the current component.

You canmake customization changes over a number of days, and you can log in
and out of CRM during this period. You can also perform multi-stage
customization. Please refer to the ScriptingMulti-Stage Customizations (page 6-
5) page.

Stopping Component Manager
The Existing Components panel is the only panel displayed on the Component Details screen. It
remains active until you start recording again or decide to script out an existing component.

Adding Customizations to an Existing Component
You can add customizations to any of the components in the Existing Components List. To do this:

Developer Guide 6-3

Chapter 6

l If currently recording a different component, then select another component in the Existing
Components List and click "Set to be the Current Component". If the current component has
never been scripted, a dialog box is displayed to remind you.

l If you are not recording any components, then select a component from the Existing
Components List and click "Start Component Manager"

l You can also use Advanced Component Options to add customizations to an existing
component. See Advanced Component Options (page 6-9).

Changing the Current Component
If a number of components are listed in the Existing Components List, you canmake any of them the
Current Component. Once you do this, all customizations youmake are recorded against the new
current component.

To change the current component:

1. From theExisting Components list, highlight the component you want to set as the current
component.

2. Click theSet To Be Current Component button. If the current component has not yet been
scripted, a dialog box is displayed to remind you.

3. You need to select theCancel button and script the existing component at this stage before
you create a new one, or select theOK button to continue without scripting the existing
component.

4. When the component is set as the current component, its details are displayed on the
Currently Recording Component panel, and a blue banner with the text This customization will
be labeled with Component Name '[Name]' is displayed on all customization pages.

Scripting Customizations
"Scripting" is the term used to describe the process of generating a set of script files from a particular
component. These files can then be installed to a second CRM system.
Before final scripting of a component, you can preview the script that will be generated.

Previewing Changes
To view the customization script in your browser window:

1. Select theComponent Details tab and select the component you want to script from the
Existing Components list.

2. Click on thePreview Script button. When you do this, the customization script is displayed in
the Script Preview Of display area.

3. Select theContinue button to close the Script Preview Of display area.

Scripting Changes
To script recorded changes:

1. From theComponent Details tab, ensure that component you want to script is selected from
the Existing Components list.

2. Select theScript Component button.
3. Youmay accept the default filename, however youmay wish to choose a new one if you have

already scripted the current component. See ScriptingMulti-Stage Customizations (page 6-5).

6-4 Sage CRM

Chapter 6: Component Manager

4. Add a brief description of the changes you'vemade in theDescription field. The Description
field is not a required field. Information you type here will be saved in the ECF file (see below)
when the component is scripted. This informationmay be useful at a later date. For example,
you can write a brief description that will remind you of the customization changes youmade in
a particular implementation before you reproduce the changes in a new installation.

5. Ensure that Script As XML is not checked. If you check this box then an XML file will be
produced instead of an ES file. This XML file cannot be used by Component Manager on the
target system. Script As XML is only used in specific scenarios involving integration to other
applications.

6. Select the Script Component button. The component is scripted and the generated file names
and locations are displayed.

Note: The Component Manager automatically copies files from the system's Custom
Pages folder only if they are included in a tab group with the customfile action. If your
customization files include other files such as ASP, .NET Dlls, TXT, JS, or INC files,
then copy these extra files into the component's Custom Pages directory when the
component is finished scripting. The Custom Pages folder will be at
<installpath>\<installname>\inf\<component name>\CustomPages

Note:The Component Manager can be used to script Interactive Dashboard changes.
This can only be done if the data sources, users and channels are identical in both Sage
CRM systems. For example, if you script out a dashboard gadget based on a Saved
Search, the saved searchmust exist on the new system for the gadget to work on the
dashboard.

When you script a component, all the files created are written to the <CRM install
path>\<installname>\inf directory. In a typical implementation, the INF directory contains the ECF file
(for exampleMyComponent.ECF) and the component directory. The component directory contains
the ES script file (for exampleMyComponent.ES) and any another files you scripted, for example
ASP pages.

l The ECF file lists the component name and details.
l All of the customization changes you record are scripted out in JavaScript to the ES script file.

See Saving a Component (page 6-7).

Scripting Multi-Stage Customizations
When you are recording customization changes, youmay want to script all the changes you have
made up to a certain point in order to replicate just those changes in a new implementation. Youmay
then want to continuemaking changes and replicate the new changes as well as the previous ones in
another implementation. Component Manager allows you to do this.
For alternative solutions, see Advanced Component Options (page 6-9).
To script a multi-stage customization:

1. Create a new component called 123 Comms, for example, and set it as the current
component.

2. Save it and beginmaking customization changes.
3. When you reach the point where you want to script the changes you havemade, select the

Script ComponentButton. The Component Scripting page is displayed, with the component
name you added in Step 1 in the File Name field.

Developer Guide 6-5

Chapter 6

4. In the File Name field, type the name you want assigned to the component files when you
script this stage of the customization.

5. Type a description in theDescription field.
6. Select theScript Component button.
7. Select theContinue button.The component name you added in Step 1 is still the current

component on the Component Details page.
8. Make some additional customization changes. These changes are recorded as part of the

current component, along with the changes you already recorded and scripted.
9. Specify a new file name and select theScript Component button. The component files

generated contain all of the changes youmade in the first part of the customization as well as
the recent changes youmade. You can continue to script changes in this way as many times
as you need to, but youmust make sure that you use a different, meaningful file name each
time you script.

10. When you have fully completed the customization, it is advisable to carry out a final scripting,
keeping the current component name in the File Name field. It is always recommended to
script the current component before youmove on to a new customization.

11. When you are installing the script to the second system, ensure that you select Apply All
Changes if you want all of the changes that exist in the final version of the component to be
installed. See Installing a Component (page 6-7).

Scripting Workflows
In Sage CRM version 6.1 and later, it is possible to use Component Manager to script workflows.
Changes made to workflows are recorded to the current component along with any other
customizations.
When installing the component on the target system the following rules apply:

l If there is no workflow on the target system that has the same name, the workflow in the
component will be created.

l Any workflow on the target system having a different namewill not be affected by the
installation of the component.

l If there is a workflow on the target system that has the same name, this workflow will be
amended to incorporate the workflow from the component. The workflow tree will be replaced
with the tree from the source system.

l If any workflow rules or states are deleted on the source system, the corresponding items will
not be deleted on the target system. Deletions of workflow rules and states are not transferred
by component manager. The items will still appear on the side bars of the workflow in the
target system, although they are not used in the workflow tree anymore.

Note that Escalation rules are not recorded. See Introduction to Component Manager (page 6-1) for
more information on what is and is not recorded by Component Manager.

Note: Components that were generated prior to 6.2 with workflow rules and loaded into
6.2 will have all workflow rules set to disabled. The user will be required to be enable
rules individually after component is installed. Components generated with 6.2 will not be
affected.

6-6 Sage CRM

Chapter 6: Component Manager

Saving a Component
Script files generated by Component Manager (see Scripting Customizations (page 6-4)) should be
compressed to a ZIP format before installing to a second system.
When a component is scripted, the files are saved to the following location:
<CRM install path>\<installname>\inf

For example C:\Program Files\Sage\CRM\CRM\inf\
The following files and subfolder are created (where "MyComponent" is the filename chosen when
scripting the component):

l MyComponent.ecf - this file contains the component name and description
l MyComponent\ - this subfolder contains MyComponent.es and also any other files that were

part of the customization (for example ASP, .NET Dlls, TXT, JS or INC files)
l MyComponent.es - this is the actual script file containing the instructions to install the

component items on the second system
All of the above files must be saved into a single ZIP file (e.g. MyComponent.ZIP). To create a ZIP
file:

1. OpenWindows Explorer and browse to the inf folder.
2. Select theMyComponent folder andMyComponent.ecf, right-click, and select Send To |

Compressed (zipped) Folder. Windows will create the ZIP file for you.
This ZIP file will be used when you are installing the component (see Installing a Component).

Installing a Component
This section deals with the process of installing an existing component, created elsewhere, to your
CRM system.

For information on creating component files see Recording Customizations (page 6-2) and for details
on saving the components to a Component ZIP file see Saving a Component (page 6-7).

A Component ZIP file is a file containing the component script files that has been
compressed into ZIP format. Component ZIP files may contain more than one
component.

To install the component from aComponent ZIP file:

1. Go toAdministration |Customization |Component Manager, and select theComponents
tab.

2. In theAdd Components panel, click Browse to select the ZIP file that contains the
component files.

3. Click Upload New Component. The component name should now appear in theAvailable
Components list.

4. Click on the component name in theAvailable Components list. TheView Details button
allows you to view more information about the component before it is uploaded, such as the
version it was created in, and a detailed description of the component. Click Install
Component.

Note: youmay see amessage "No parameter information found in [component
name]". This can be ignored unless you havemodified the script to include

Developer Guide 6-7

Chapter 6

parameter information. Please seeModifying Component Manager Scripts (page
6-11). If parameters were specified, the "Parameters, Step 1 of 2" page is
displayed with a number of fields. Complete the fields and select the Install
Component button to continue installing the Component. The "Parameters, Step
1 of 2" pagemay also be displayed without fields, but with information about the
component you are installing.

5. On the next screen, you can click Preview Install again to see the actual script that will be
executed when the component is installed along with a prediction of whether each step will be
successful.

6. Select Yes orNo in theApply All Changes drop-down. The Apply All Changes drop-down is
only relevant to changes made by previous components to the same objects (screens, fields,
lists etc) that are being changed by the current component. If you chooseYes then everything
in the component will be installed, overwriting any changes frommade by previous
components. ChooseNo to preserve changes from previous components. See Scripting
Multi-Stage Customizations (page 6-5).

In most circumstances you should select Yes. You should only select Nowhen
you have a specific reason for doing so as it may result your component being
only partially installed.

7. Click Install to proceed with the actual installation. Component Manager starts to install the
scripts. This involves:
- Loading the new information.
- Recreating the views.
- Reloading themetadata.

You will be warned if you install a component created in a newer version of CRM
than the version that the component was created in. For example, a component
created in version 6.3 will generate a warning if you try and install it in a 6.2
system.

8. Wait for theComponent Installedmessage.
At this point youmay wish to view the log file that has been generated. SeeComponent Manager
Log File for more information on the log file. Otherwise click Continue to return to the Components
tab.

Component Manager Log File
A log file is generated automatically when a component is installed. Please see Installing a
Component (page 6-7).
This log file can be viewed either:

l At the end of the installation process by clicking "View Log File".
l By browsing to Administration | System | Logging and selecting "Component Install Logs" from

the drop-down.

6-8 Sage CRM

Chapter 6: Component Manager

The log file is in CSV format and so can be opened by Microsoft Excel or other
spreadsheet programs. You will have to click to confirm that you wish to open this file
type from your browser

The Log file contains two columns, and a row for each action attempted during the component
manager installation.
The first column contains one of these values:

l OK - to indicate success of the action
l Overwrite - to indicate that the action will overwrite a previous change.
l Fail - to indicate failure

The second column contains the script for the attempted action.

Advanced Component Options
Advanced Component Options allows you to create or script new components that are based on
customizations that weremade within a certain date range and/or by a certain user. For example,
Advanced Scripting would allow you to create a component that contained all customizations made
by the System Administrator; or all customizations made within the last 14 days; or all
customizations made by the System Administrator betweenMay 1st andMay 31st.

Components that are generated by Advanced Scripting will contain all changes that meet
the selected criteria regardless of whether Component Manager was turned on or
not while the changes were being made. This makes Advanced Scripting a powerful
tool, however it is important to understand that Advanced Scripting can change
previously recorded components, so please read and understand this section
carefully before using the tool.

Advanced Component Options can be used for the same types of customizations that are recorded
when Component Manager is turned on. See Introduction to Component Manager (page 6-1) for the
list of customizations that can be recorded.

How to Generate a Component Script using Advanced Component Options
Review Scripting Customizations (page 6-4) for an overview of component scripting.

1. InAdministration |Customization |Component Manager, select theComponent Details
tab

2. Click theAdvanced Scripting button
3. On theGenerate Advanced Component Script page, enter aNew Component Name. This

will be the name that is given to the generated script files.
4. Select And orOr to join the criteria fields. If you select And then the criteria (below) are

restrictive; all must be true. If you select Or then any must be true for the customization to be
included.

5. Optionally, you can select a component from theSelect To Include Existing Component
list. If you select a component, then all of the changes that have been saved to that
component will be included in your generated script. Note that theAnd orOr selection
includes this component as a criterion, so you are able to select, for example: all
customizations that are in MyComponent or that were changed in the previous month.

6. Select the criteria that you want to use to specify the customizations that you want to include
in the script. The possible criteria are:

Developer Guide 6-9

Chapter 6

Criterion Details

Created
Date

Select an absolute or relative date range. Includes all customizations that
were created within the range.

Updated
Date

Select an absolute or relative date range. Includes all customizations that
were updated within the range.

Created
By

Select a user. Includes all customizations that were created by the selected
user.

Updated
By

Select a user. Includes all customizations that were updated by the
selected user.

7. Click theScript Component button. You are taken to the Component Scripting page.
8. Accept the default filename (unless you already have scripts with the same name that you

wish to preserve) and enter a description for the component.
9. Click theScript Component button. The component is scripted and the generated file names

and locations are displayed.
10. Return to the Components tab. You will see your component listed underAvailable

Components.
You can now save this component for installation on another system. See Saving a Component (page
6-7).

How to Create a New Component Using Advanced Component Options

This procedure should be used with care as it may modify other components on your
CRM system.

1. InAdministration |Customization |Component Manager, select theComponent Details
tab.

2. Click theAdvanced Scripting button.
3. On theGenerate Advanced Component Script page, enter aNew Component Name. This

will be the name that is given to the new component.
4. Select And orOr to join the criteria fields. If you select And then the criteria (below) are

restrictive; all must be true. If you select Or then any must be true for the customization to be
included.

5. Optionally, you can select a component from theSelect To Include Existing Component
list. If you select a component, then all of the changes that have been saved to that
component will be included in your generated script. Note that theAnd orOr selection
includes this component as a criterion, so you are able to select, for example: all
customizations that are in MyComponent or that were changed in the previous month.

6. Select the criteria that you want to use to specify the customizations that you want to include
in the new component. The possible criteria are:

Criterion Details

Created
Date

Select an absolute or relative date range. Includes all customizations that
were created within the range.

6-10 Sage CRM

Chapter 6: Component Manager

Criterion Details

Updated
Date

Select an absolute or relative date range. Includes all customizations that
were updated within the range.

Created
By

Select a user. Includes all customizations that were created by the selected
user.

Updated
By

Select a user. Includes all customizations that were updated by the
selected user.

7. Click theMark Component button. At this point the system will check whether any
customizations that meet your criteria have already been included in other components. If
there are any such customizations you will see a blue banner warning: This will move
customizations belonging to other components. Do you wish to Save Anyway?.

If you proceed, by clicking theMark Component button again then the
customizations that were in the other component(s) will be transferred to your
new component. They will no longer be part of the old component(s), and if you
script out the old components the customizations will not be included in the script.

8. You are taken to the Component Details tab. You will see your component listed underExiting
Components.

You can now record additional customizations to this component, or you can script it out for
installation on another system. See Scripting Customizations (page 6-4).

Modifying Component Manager Scripts
Before you install components, you canmodify the scripts that are generated in the ES and ECF files
by Component Manager.
You can specify parameters in the ECF file (see Script Parameters (page 6-13)), and you can
manipulate the JavaScript generated during the scripting stage in the corresponding ES script file.
See Scripting Customizations (page 6-4) for more information on the ECF and ES file locations.
Modifications may bemade in order to:

l Make a component usable in multiple installations
l Change screen names
l Addmessages
l Copy ASP pages and other files from one location to another
l Create new tables
l Add new columns
l Search for and replace words in ASP pages.
l Modify reports
l Add views
l IDatabase, which returns the current installed database.
l ILocale, which indicates the installed locale. There are two constants that can be returned

which are IWestern and IJapanese.
l sViewText, which can be used as a temporary storage buffer when scripting views.

Developer Guide 6-11

Chapter 6

Variable and constant names are case sensitive and can be used for any component
APIs.

It is also possible to specify parameters to be passed to the script files. See Script Parameters (page
6-13).

Error Handling
There is an errorhandling option that allows you to control the way any errors are handled. By default
any errors that occur during the running of the component are listed in themessages on the screen,
but the component will keep running and all other changes specified in the ES file will be saved.
To change this behavior, add the following line to the ECF file:

errorhandling=strict

When this line is included:

l Any error will cause the component to stop running.
l All changes already made will be rolled-back.

Referential Integrity
From Sage CRM 7.0 there is new architecture being used to facilitate the interactive dashboard. To
allow the persistence of theMeta DataModel within this architecture strict referential integrity needed
to be enforced within Sage CRMmeta data tables.
This means there is a requirement to order the code in components correctly within the ES script file.
For example, you cannot add a view if the table the view is based on has not already been added.
The following is a list of custom table dependencies:

Custom_Edits - (Custom_Tables)

Custom_Views - (Custom_Tables)

Custom_ScreenObjects - (Custom_Tables, Custom_Views[optional])

Custom_Lists - (Custom_ScreenObjects, Custom_Edits)

Custom_ContainerItems - (Custom_ScreenObjects x2)

Custom_Tabs - (Custom_ScreenObjects)

Custom_Screens - (Custom_ScreenObjects, Custom_Edits)

FieldSecurity - (Custom_Edits)

UserSettings - (Users)

TerritoryPermissions - (Custom_Tables ,Users, TerritoryProfiles, Territories)

Channel_Link - (Users, Channel)

Users - (Channel, TerritoryProfiles, Territories)

Note: Using AddCustom_Data or RunSQLto update the above tables is problematic as
the foreign keys will not be set automatically. Using the table appropriate method is the
recommended practice. For example, to update Custom_Edits use AddCustom_Edits.

6-12 Sage CRM

Chapter 6: Component Manager

Script Parameters
Whenmodifying Component Manager scripts, youmay wish to pass parameters to your ES script
file. This is accomplished by adding a Parameters section to the ECF file as explained below.
See Scripting Customizations (page 6-4) for information on the generation of the ES and ECF files,
and seeModifying Component Manager Scripts (page 6-11) for an overview of modifying scripts.
Parameters must be one of the following types:

l TEXT
l CHECKBOX
l MULTITEXT
l PASSWORD
l INTEGER
l SELECT
l DATETIME
l DATE

To specify parameters, create a parameters section in the ECF file with the keywordParams: and put
the
parameters on separate lines beneath the keyword in the following format:

<Parameter Type>

<Attribute=Value>,<Attribute=Value>,<Attribute=Value>

For example

Params:

TEXT Name=ServertName,Caption=Enter server name,Required=True

CHECKBOX Name=IncludeThis,Default=On,Caption=Include extras

PASSWORD Name=Password

INTEGER Name=NumUnits,OnChange=alert('You have entered'+NumUnits.value+' units.');

When you are installing the component, the fields are displayed with the attributes you
specified. To use the value(s) entered you call the Param() method in the ES script file (see Param).
For example, to retreive the value entered to the 'Enter Server Name' text box, you need to call
Param(ServerName) in the ES script file.
The following table describes the attributes that you can specify for parameters. All of the attributes
are optional, except Name.

Attribute Description

Name Required. Name of the field. You can use this attribute with the
Param function to get back the value entered by the user on the
Parameter Info screen.

Default The default value for the parameter.

NewLine This is true by default. You set it to false if you want to keep the
parameter on the same line as the previous one.

Rows The number of rows that the parameter should take up. Default is 1.

Cols The number of columns that the parameter will take up. Default is 1.

Developer Guide 6-13

Chapter 6

Attribute Description

Required Set to true tomake sure the user enters a value for this
parameter.Validation is done when the user clicks on the Install
Component button.

ReadOnly Set to true to show a read only value to the user.

Size The number of characters that can be entered in a Text type
parameter. Default is 20.

MaxLength The number of characters that the parameter takes up on the screen.
Default is 40.

Caption This is the text that will appear beside the parameter on the screen.

CaptionPos This defines the position of the caption relative to the value.

OnChange JavaScript to be applied when the user changes the value in the field.

Attribute=Family For parameters of type SELECT, this specifies what caption family
to use to get the drop-down list.

Phone and E-mail Changes
A number of fields relating to phone and e-mail data have been dropped in 7.1 and two new link tables
(for phone and e-mail) have been created. The views vPhone and vEmail have been dropped.

Components that reference these fields and views need to be reviewed.
CRM provides an error message if any inconsistencies are detected:

ChildCases70 jscript error: The view vListCases contained in
the view script is different to the view existing in the
database. The script view has been saved as vListCases_new.
The following fields are in your view but not in ours: Comp_
EmailAddress, Comp_FaxAreaCode, Comp_FaxCountryCode, Comp_
FaxNumber, Comp_PhoneAreaCode, Comp_PhoneCountryCode, Comp_
PhoneNumber, Pers_EmailAddress, Pers_FaxAreaCode, Pers_
FaxCountryCode, Pers_FaxNumber, Pers_PhoneAreaCode, Pers_
PhoneCountryCode, Pers_PhoneNumber

Other areas whichmay be impacted by the phone and e-mail changes are:
l Search SQL properties of fields
l Search Select Advanced
l SOAPWeb Services code (wsdl is different)
l .NET code
l Block Usage

l If you use fields directly in blocks (personboxshort) that are referenced
l Self Service Block References

Please refer to the Installation and UpgradeGuide for more information on the Phone and E-mail table
changes.

Component Manager Methods
The followingmethods and parameters are covered in this section:

AddCoachingCaptions (page 6-15)

6-14 Sage CRM

Chapter 6: Component Manager

AddColumn (page 6-16)
AddCustom_Captions (page 6-16)
AddCustom_ContainerItems (page 6-16)
AddCustom_Data (page 6-17)
AddCustom_Databases (page 6-18)
AddCustom_Edits (page 6-18)
AddCustom_Lists (page 6-19)
AddCustom_Report (page 6-20)
AddCustom_ReportBand (page 6-21)
AddCustom_ReportChart (page 6-21)
AddCustom_ReportField (page 6-22)
AddCustom_ReportGroup (page 6-22)
AddCustom_ScreenObjects (page 6-23)
AddCustom_Screens (page 6-24)
AddCustom_Scripts (page 6-25)
AddCustom_Tables (page 6-26)
AddCustom_Tabs (page 6-27)
AddLPCategory (page 6-27)
AddLPGadget (page 6-28)
AddLPLayout (page 6-28)
AddLPUserLayout (page 6-28)
FinishLandingPage (page 6-29)
AddMessage (page 6-29)
AddProduct (page 6-29)
AddView (page 6-29)
AddCustom_Relationship (page 6-20)
CopyAndDropColumn (page 6-30)
CopyAspTo (page 6-30)
CopyFile (page 6-30)
CreateNewDir (page 6-30)
CreateTable (page 6-31)
DeleteColumn (page 6-31)
DeleteCustom_Caption (page 6-31)
DeleteCustom_Captions (page 6-32)
DeleteCustom_Field (page 6-32)
DeleteCustom_Screen (page 6-32)
DeleteCustom_ScreenObjects (page 6-32)
DropTable (page 6-33)
DropView (page 6-33)
DropConstraint (page 6-32)
FileOpen (page 6-33)
GetDLLDir (page 6-34)
GetInstallDir (page 6-34)
Param (page 6-34)
QueryResultsToFile (page 6-34)
RunSQL (page 6-35)
ProgressScriptTransaction (page 6-34)
SearchAndReplaceCustomFile (page 6-35)
SearchAndReplaceInDir (page 6-35)
SearchAndReplaceInFile (page 6-35)
TableExists (page 6-35)

AddCoachingCaptions

Description Adds a new coaching caption, and returns its id.

Parameters Coch_ActionID: The action number of this caption.
Coch_CaptCode: The caption code for this caption.

Developer Guide 6-15

Chapter 6

AddColumn

Description Use this to physically add a column to an existing table.

Parameters Col_TableName: The actual name of the table to which the column is to
be added.
Col_ColumnName: The new column name.
Col_Type: The CRM entry type that this column is to have.
Col_Size: For certain types of field, for example, text fields, specify how
many characters it is to be.
Col_AllowNulls: If this column allows null values. True for allow nulls,
False otherwise.
Col_IsUnique: If this columnmust have unique values. True for unique
values, False otherwise.
Col_IsIdentity(Boolean): indicates whether the column should be created
as an auto-incrementing field.

AddCustom_Captions

Description Use this to add/change translations in the system. Also returns the Id
value of the record added.

Parameters Capt_FamilyType: The Family type that this caption belongs to. For
example, Tags.
Capt_Family: The family for this caption. Capt_Code: The Code for this
caption. Captions are identified by their Family and Code. Capt_Order:
The order that this should appear in.
Capt_US: The US English translation.
Capt_UK: The UK English translation.
Capt_FR: The French translation.
Capt_DE: TheGerman translation.
Capt_ES: The Spanish translation.
Capt_DU: The Dutch translation.
Capt_JP: The Japanese translation.
Capt_IntegrationID :(Optional) The identifier of the integration that this
caption belongs too. Not used outside of the integrationmodule

AddCustom_ContainerItems

Description Use this to add blocks to a container. Also returns the Id value of the
record added.

Parameters Cont_Container: Name of the container.
Cont_BlockName: Name of block to be added.
Cont_Order: SYSINT
Cont_NewLine: Set to 1 for new line and 0 for the same line.
Cont_Width: Sets width.
Cont_Height: Sets height.
Cont_Deleted: Flag to indicate if record is deleted.

6-16 Sage CRM

Chapter 6: Component Manager

AddCustom_Data

Description Adds or updates data in any table in CRMTableName: Name of the table
to update.

Using AddCustom_Data to update some custom tables(Custom_Edits,
Custom_Views, Custom_ScreenObjects, Custom_List, Custom_
ContainerItems, Custom_Tabs, Custom_Screens) is problematic as the
updates to the foreign key will not be set automatically. Using the table
appropriate method is the recommended practice e.g. to update Custom_
Edits use AddCustom_Edits

Parameters TablePrefix: The prefix of the table.
IdColumn: The name of the column on the table that holds the Id value.
Fields: A comma separated list of fields to update.
Values: A comma separated list of values tomatch up with the fields.
The special values ISBLANK, ISNULL, ISNOW can be used in place of
field values. ISBLANK is equal to ""; ISNULLmarks column as NULL;
ISNOW will write the current date and time, to the nearest second. If the
value is targeted for a string field it should be enclosed in double quotes.
For example:

Please refer to Developer Help files for code sample.

KeyFields: A comma separated list with the indices of the fields from the
fields list that are to be used to identify if a record already exists-and
therefore whether to update it or insert it. For example, this code updates
the Custom_Tables table and sets the field Bord_SoloOptions to be 5
where Bord_DatabaseId is null and Bord_Name = 'UserContacts'.

Please refer to Developer Help files for code sample.

ExtraSQL: String. Default value is blank. If this is passed in, it is used as
an extra condition that must bemet in order to update the record. If the
record exists, it is updatedonly if the ExtraSql condition is true. If the
record does not exist, it is inserted as usual. If the record exists but does
not satisfy the ExtraSql condition, the function returns 0 to indicate that
no record was updated. For example:

Please refer to Developer Help files for code sample.

This updates the Capt_DU column of custom captions, only where the
existing value is NULL.

Developer Guide 6-17

Chapter 6

AddCustom_Databases

Description Use this to add links to external databases. Also returns the Id value of
the record added.

Parameters Cdbo_Description: Description of the other database.
Cdbo_AliasName: Alias for the database.
Cdbo_UserName: Username to use to connect to database.
Cdbo_Password: Password to go with above username.
Cdbo_Deleted: Flag to indicate if record is deleted. Leave as null.
Cdbo_DriverName: Type of driver to use to connect to database.
Cdbo_ServerName: Name of the server where the database resides.
Cdbo_DatabaseName: Actual database name.

AddCustom_Edits

Description Use this to add/change the properties of a field in CRM. Also returns the
Id value of the record added.

Parameters ColP_Entity: The name of the entity.
ColP_ColName: The name of the field.
ColP_EntryType: The entry type. Please refer to the CRMEntryBlock
Object for a list of entry types.
ColP_DefaultType: The default type of the column.
ColP_DefaultValue: If the default type of the column is to use a default
value, then enter the default value here.
ColP_EntrySize: How many characters will be seen at a time when
editing the column.
ColP_LookUpFamily: If applicable for the entry type then this is a string
with the lookup family name.
ColP_LookUpWidth: The width of the column.
ColP_Required: Set to Y if this columnmust be filled in, null or N
otherwise.
ColP_AllowEdit: Set to N if this column is readonly, and set to Y or null
otherwise.
ColP_SearchDefaultValue: If applicable to the entry type, this is the
search default value.
ColP_System: Set to Y if this is a system column and is not to appear on
customization screens, set to N or null otherwise.

6-18 Sage CRM

Chapter 6: Component Manager

AddCustom_Lists

Description Used to add columns to a customized List group. Also returns the Id
value of the record added.

Parameters GriP_GridName: The name of the grid in which this column appears.
GriP_Order: The order in which this column appears in the grid.
GriP_ColName: The name of the column.
GriP_AllowRemove: Flag to indicate if this column can be removed or
not. 'Y' to allow removal, 'N' for not.
GriP_AllowOrderBy: Flag to indicate if the list can be ordered by this
column. Y to allow order by. N or null otherwise.
GriP_OrderByDesc: Flag to indicate if the order by should start with
descending order.
GriP_Alignment: Code to indicate the column alignment. CENTER (or
NULL) for center, LEFT for left, RIGHT for right.
GriP_Jump: Code to say if this column can hyperlink to another page.
GriP_ShowHeading: Flag to indicate if the heading should show for this
column in the list or not. Y for show heading. N or null otherwise.
GriP_ShowSelectAsGif: Flag to indicate if this column should show as a
gif. Y for yes, N or null otherwise.
GriP_CustomAction: String with name of page to hyperlink to if the Jump
is set to Custom.
GriP_CustomIdField: String with name of field to use as the id field if the
Jump is set to Custom.
GriP_DeviceID: The device id of this list, look up from Devices table.
Grip_CreateScript: String. Lets you set a create script on a column. The
default value is blank.

Developer Guide 6-19

Chapter 6

AddCustom_Report

Description Used to create a report

Parameters Repo_Category: String
Repo_Name: String
Repo_Title: String
Repo_Description: String
Repo_Bands: Integer
Repo_ExportAsXML: String
Repo_FooterCentrePageData: String
Repo_FooterLeftPageData: String
Repo_FooterRightPageData: String
Repo_HeaderCentrePageData: String
Repo_HeaderLeftPageData: String
Repo_HeaderRightPageData: String
Repo_FooterCentrePageDataImage: String
Repo_FooterLeftPageDataImage: String
Repo_FooterRightPageDataImage: String
Repo_HeaderCentrePageDataImage: String
Repo_HeaderLeftPageDataImage: String;
Repo_HeaderRightPageDataImage: String
Repo_PrintOptions: Integer
Repo_UserFilterField: String
Repo_PrivateUserID: Integer
Repo_ReportStyle: String

AddCustom_Relationship

Description Used to add entity relationships
for SData provider

Parameters TableName: String
ColumnName: String
TableNameRelated: String
ColumnNameRelated: String
RelationshipType: Integer
IsCollection: Boolean
LinkTableName: String
LinkColumnName: String
LinkColumnNameRelated:
String

6-20 Sage CRM

Chapter 6: Component Manager

AddCustom_ReportBand

Description Used to add a report band.

Parameters ReBa_ReportID: Integer
ReBa_DetailLevel: Integer
ReBa_CrossTabField: String
ReBa_DisplayOptions: Integer
ReBa_ViewName: String
ReBa_WhereClause: String
ReBa_DetailLinkField: String
ReBa_MasterLinkField: String

AddCustom_ReportChart

Description Used to add a chart to a report.

Parameters ReCh_ReportID: Integer
ReCh_Options: Integer
ReCh_BackImageName: String
ReCh_BarStyle: String
ReCh_BottomCaption: String
ReCh_BottomDateFunction: String
ReCh_BottomFieldName: String
ReCh_Elevation: Integer
ReCh_GradientEndColour: String
ReCh_GradientStartColour: String
ReCh_Height: Integer
ReCh_HorizontalOffset: Integer
ReCh_LeftCaption: String
ReCh_LeftFieldName: String
ReCh_LeftFunction: String
ReCh_LegendAlignment: String
ReCh_MarksStyle: String
ReCh_Perspective: Integer
ReCh_PieRotation: Integer
ReCh_Rotation: Integer
ReCh_Style: String
ReCh_Tilt: Integer
ReCh_VerticalOffset: Integer
ReCh_Width: Integer
ReCh_Zoom: Integer

Developer Guide 6-21

Chapter 6

AddCustom_ReportField

Description Used to add a report field.

Parameters ReFi_ReportBandID: Integer
ReFi_Alignment: String
ReFi_DataField: String
ReFi_UsageType: String
ReFi_DisplayOrder: Integer
ReFi_JumpDestination: String
ReFi_JumpFileName: String
ReFi_JumpIdentifier: String
ReFi_Mask: String
ReFi_TotalsType: String
ReFi_SortOrder: Integer

AddCustom_ReportGroup

Description Used to add a report group.

Parameters ReGr_ReportBandID: Integer
ReGr_GroupByField: String
ReGr_GroupOrder: Integer
ReGr_HasFooter: String
ReGr_JumpDestination: String
ReGr_JumpFileName: String
ReGr_JumpIdentifier: String

6-22 Sage CRM

Chapter 6: Component Manager

AddCustom_ScreenObjects

Description Use this to add a new list or screen to the system. Also returns the Id
value of the record added.

Parameters CObj_Name: The name of the custom_screenobject.This must be
unique.

CObj_Type: The type of the object. This can be List, Screen,
SearchScreen, TabGroup, filterbox, or Block.

CObj_EntityName: The name of the entity on which this object is based.

CObj_AllowDelete: If a user is allowed to delete this object. Set to Y if
allowed to delete.

CObj_Deleted: If this object is deleted. Set to 1 if it is deleted.

CObj_TargetTable: The table from which fields can be added to this
object.

CObj_Properties: Comma separated list of properties. For internal use
only.

CObj_CustomContent: Custom script that can be added to the object.

CObj_UseEntity: The table from which fields can be added to this object.

CObj_TargetList; Internal use only.

CObj_Ftable: Internal use only.

CObj_FtableFCol: Internal use only.

CObj_CheckNameOnly: Optional. If set to true the screen object will be
updated checking name only (instead of checking against name AND
entity).

Developer Guide 6-23

Chapter 6

AddCustom_Screens

Description Use this to add or amend fields on a screen. Also returns the Id value of
the record added.

Parameters SeaP_SearchBoxName: The name of the screen in which this field
appear. This shouldmatch Cobj_Name from Custom_ScreenObjects
table.
SeaP_Order: The order in which this field appears within the screen.
SeaP_ColName: The column name of this field.
SeaP_Newline: Number to indicate if this field should show on a new
line. Set to 1 for new line and 0 for the same line.
SeaP_RowSpan: Number of rows that this field should span on the
screen.
SeaP_ColSpan: Number of columns that this field should span on the
screen.
SeaP_Required: Set to Y if the field is required, N if it is not.
SeaP_DeviceID: Number of the device that this screen is for. Look up
from the Devices table.
SeaP_OnChangeScript: Client-side javascript to apply to the onchange
event of the field.
SeaP_ValidateScript: Server side script to be run to validate the field.
SeaP_CreatedScript: Server side script to be run when field is created.
SeaP_Jump: Where this field will jump to if clicked.

Note that instead of using AddCustom_Screens, you can set some
prefined variables and then call AddEntryScreenField. For example this
use of AddCustom_Screens:

AddCustom_Screens('GlobalLibraryFilterBox',1,'libr_

filename',0,1,1,'N',0,'','','','');

can also be written like this:

EntryScreenName='GlobalLibraryFilterBox';

FieldOrder=1;

FieldName='libr_filename';

NewLine=false;

RowSpan=1;

ColSpan=1;

Required=false;

AddEntryScreenField();

6-24 Sage CRM

Chapter 6: Component Manager

AddCustom_Scripts

Description Use this to add table and entity level scripts. Also returns the Id value of
the record added.

Parameters CScr_TableName: The name of the table to which this script applies.
CScr_ScriptName: The name of the script.
CScr_Order: The execution order in which this script should be run, if
there aremore than one script on a table.
CScr_Script: The actual script.
CScr_ScriptUser: The name of the user that the script should run under,
if applicable.
CScr_ScriptType: This can be one of 4 values that correspond to the
options available for Script Type. The values are ‘entity’ (Entity Level
Script), ‘entitywrb’ (Entity Level with Rollback), ‘tls’ (Table Level) and
‘tlsdetached’ (Detached Table Level). Note that the parameter in this
position used to be for CScr_IsEntityScript which had values of ‘Y’ or ‘N’.
Every effort has beenmade to ensure backward compatibility for existing
scripts still using this old parameter however it is advised to update any
scripts using this to use the ScriptType instead.
CScr_UseRollBack: Y/N flag to indicate if rollback is available on this
script.
CScr_ViewName: The name of the view that this script should use to get
information from.

Developer Guide 6-25

Chapter 6

AddCustom_Tables

Description This is used to add a table. Also returns the Id value of the record added.

Parameters Bord_Caption: The caption given to this table.
Bord_System: Flag to indicate if this is a system table or not. Set to Y for
system tables. System tables cannot be seen via Administration |
Customization.
Bord_Hidden: Flag to indicate if this table is to be hidden. Set to Y for
hidden tables. Hidden tables cannot be seen in Administration |
Customization.
Bord_Name: The actual physical table name of the table.
Bord_Prefix: The prefix that is attached to all the fields in this table.
Bord_IdField: The name of the field in the table that holds the unique id of
each row.
Bord_PrimaryTable: Flag to indicate if this table is a primary table, (and
thus if it has territory security on it). Set to Y for primary tables, N or Null
otherwise.
Bord_ProgressTableName: the name of the table used for workflow
progress.
Bord_ProgressNoteField: the name of the field used for workflow tracking
notes
Bord_WorkflowIdField (Boolean): whether the table has a <prefix>_
WorkflowId field
Bord_DatabaseId: The Id of the database that this table is in. Lookup
from Custom_Databases, leave blank for tables in themain CRM
database.

6-26 Sage CRM

Chapter 6: Component Manager

AddCustom_Tabs

Description Used to add or edit tabs in tab groups. Also returns the Id value of the
record added.

Parameters Tabs_Permission: Used for internal CRM tabs only. Should be set to 0.
Tabs_PerLevel: Used for internal CRM tabs only. Should be set to 0.
Tabs_Order: The order in which this tab appears in the tabgroup.
Tabs_Entity: The name of the tab group.
Tabs_Caption: The caption for this tab.
Tabs_Action: String name of action for this tab.
Tabs_Customfilename: Name of ASP page to use for this tab, if the
action is set to CustomFile.
Tabs_WhereSQL: SQL clause that restricts the appearance of the tab.
Tabs_Bitmap: Bitmap used for the tab.
Tabs_DeviceId: The device id of this list, look up from Devices table.
Tabs_SecurityEntity: the entity used to determine whether user has
permission to see/use that tab
Tabs_OnlineOnly (boolean): used to indicate whether the tab is visible on
Solo clients.

Tabs_Deleted(Integer):used to indicate if the tab is deleted or not.

Tabs_InButtonGroup: used to implement button groups.Set to 1 if
implementing a button group.

AddLPCategory

Description Adds a dashboard category. Result is category id that was added

Parameters Name: the name of dashboard category
ParentId: id of parent category

Deleted: should be 0 if not deleted

Developer Guide 6-27

Chapter 6

AddLPLayout

Description Adds a dashboard. Result is dashboard id that was added

Parameters Name – name of dashboard

Description – description of dashboard

CategoryId – category that dashboard belong to (0 if none)

LayoutXml – dashboard layout Xml data (all gadget Ids have to be
replaced with markers for FinishLandingPage() method)

LayoutType – type of layout (currently one only)

Deleted – should be 0 if not deleted

IsTemplate – if dashboard is template

TemplChannels – CRM teams that dashboard is assigned to

TemplUsers – CRM users that dashboard is assigned to

SourceId – id of source dashboard (for FinishLandingPage() method)

AddLPGadget

Description Adds a gadget.

Parameters Name – name of gadget

Description – description of gadget

GadgetType – type of gadget

LayoutXml – gadget layout Xml data (all gadget Ids have to be replaced
with markers for FinishLandingPage() method)

DataBinding – xml data about CRM data source to be used with gadget
(CRM report id, CRM entity id etc.)

LayoutId – dashboard id that gadget belongs to

CategoryId – category Id that gadget belongs to (not used)

Deleted – should be 0 if not deleted

SourceId – id of source gadget (for FinishLandingPage() method)

AddLPUserLayout

Description Assigns template layout id to user

Parameters LayoutId – dashboard id

TemplateLayoutId– template dashboard id

UserID – user id

Deleted – should be 0 if not deleted

6-28 Sage CRM

Chapter 6: Component Manager

FinishLandingPage

Replaces all themarkers in layoutXml with new ids collected during creation of dashboards and
gadgets.

This must be run after the other interactive dashboardmethods. The interactive dashboardmethods
should be run in this order:

AddLPCategory

AddLPLayout

AddLPGadget

AddLPUserLayout

FinishLandingPage

AddMessage

Description Use this to show information to the user while the component is being
installed.

Parameters Ms_Message: String with message to be shown on-screen.

AddProduct

Description Used to add new products.

Parameters Prod_Name: String.
Prod_Description: String.
Prod_ListPrice: String.
Prod_Image: String.
Prod_APR: String.

AddView

Description Used to add views.

Parameters AViewName: The name of the view.
AEntity: The entity the view relates too. For system and hidden entities,
use the System entity.
ADescription: A free text description of the view.
AViewScript: The sql script of the view.
ACanEdit: If true, then the view can be edited.
ACanDelete: If true, then the view can be deleted.
AReportsView: If true, then the view can be used in reports.
ATargetsView: If true, then the view can be used in groups.
ForceOverwrite: If true, and there are differences between the view in the
database and the view being installed because the customer has
customized their install, then overwrite the customer's changes with
ours.
ASearchView: If true, then the view can be used by keyword searches

Developer Guide 6-29

Chapter 6

CopyAndDropColumn

Description Used to alter the properties of a column by creating a temporary column,
copying over the data, dropping the old column, then renaming the
temporary column to the old column name.

Parameters Col_TableName: The name of the table.
Col_ColumnName: The name of the column.
Col_Type: The new data type of the column.
Col_Size: The new size of the column.
Col_Allow_Nuls: Boolean value to indicate whether the column allows
nulls.

Return
Value

None

CopyAspTo

Description User to copy an ASP file from one location to another.

Parameters CTo_FileName: From file path /nameCTo_NewFileName: To file path /name. For
example:

Copy-

AspTo('custompages\\subfolder\\edit.asp','custompages\\subfolder\\edit.asp');

It is also permissible to use relative paths, as in this example:

CopyAspTo('custompages\\Edit.asp', '..\\custompages\\system\\Edit.asp');

CopyFile

Description Copies the source file to the target file.

Parameters SourceFile: The name of the file to be copied

TargetFile: The new filename

Return Value None

CreateNewDir

Description This function creates the specified directory.

Parameters DirName: The name of the directory to be created.

Return Value None

6-30 Sage CRM

Chapter 6: Component Manager

CreateTable

Description Use this to physically create a table in the database. The table will be
created with the CRM standard fields on it. That is, CreatedBy,
CreatedDate, UpdatedBy, UpdatedDate, TimeStamp, and Deleted.

Parameters Cr_Tablename: The actual table name.
Cr_Prefix: The prefix that will be added to every column in the table. Cr_
Identity: The name of the identity column in the table (this must start with
the prefix).
Cr_PrimaryTable: If this is to be a primary table in CRM. Primary tables
will have the security territory column added to them. Set to True for
primary tables, false otherwise.
SystemTable: If this is a system table, set to false.
HiddenTable: If this is to be a hidden table, set to True-that is, if the table
is not to be seen within Administration | Customization.
Cr_WorkflowIdField: indicates whether this table should have a
<prefix>_WorkflowId field.
Cr_ProgressTableName: the name of the table used for progressing, i.e.
like CaseProgress.
Cr_ProgressNoteField: the name of the field used for notes progress.
Cr_NoIDCol (Boolean):indicates whether the table has an auto-
incrementing field.

DeleteColumn

Description Drops the specified column from the specified table.

Parameters TableName
ColumnName

Return Value None

It is recommended practice to use the Delete_CustomField method for removing
columns.

DeleteCustom_Caption

Description Deletes the specified caption.

Parameters Capt_FamilyType
Capt_Family
Capt_Code

Return Value None

Developer Guide 6-31

Chapter 6

DeleteCustom_Captions

Description Deletes the specified caption family

Parameters Capt_FamilyType:
Capt_Family:

Return Value None

DeleteCustom_Field

Description Deletes the specified field from all screens, lists, reports, saved
searches, notifications, etc.

Parameters ATableName
AColumnName

Return
Value

None

DeleteCustom_Screen

Description Used to delete a screen.

Parameters SeaP_SearchBoxName: Deletes all the items for the specified screen
name regardless of device.

DeleteCustom_ScreenObjects

Description Used to delete screen objects.

Parameters CObj_Name: The name of the custom_screenobject from which deletes
are based.
DeleteHeader: This flags whether the record of this object from the
"Custom_ScreenObjects" table is deleted. If this is false, the record is
not deleted but the sub items are always deleted from:

l Custom_Lists
l Custom_Screens
l Custom_ContainerItems

CObj_DeviceID: If this is specified (not '0' or '1'...see below) then only
the specific items for this device are deleted.
If this is '0' then all records for every device are deleted. If this is '1' then
only desktop information is deleted.

DropConstraint

Description Used to drop any constraint from a table in the database - e.g. foreign key

Parameters AConstraintName: String. The name of the constraint to drop. This
procedure will delete the constraint from the database.

ATableName: String. The name of the table the constraint is on.

6-32 Sage CRM

Chapter 6: Component Manager

DropTable

Description Used to drop a table from the database.

Parameters ATableName: String. The name of the table to drop. This procedure will
delete the table from the database.

DropView

Description Used to delete/drop views.

Parameters AViewName: String. The name of the view to drop. This deletes the view
from the database.

FileOpen

Description Use this to open a CSV or Excel file and read in the values. This method
will open the file and return a "DataFile" object which can then be used to
process the values in the file. See info on the "DataFile" object for more
details.

Parameters AFileName. WideString. The full name of the file, including the drive and
directory.

Return
Value

DatFile Object The "DataFile" Object has the following two properties:
EOF. Boolean value, returns if the end of the file has been reached.
FieldCount. Integer value, returns the number of columns in the file
(based on the current row). The "DataFile" Object has the following two
methods:

NextRow()

GetField()

NextRow()

Description Skips the file pointer on to the next row in the file

Parameters None

GetField()

Description Returns the value in the given field for the current row.

Parameters AIndex-an integer value indicating the column number to return the value
for. 0 returns the value in the first column for the current row, and so on.

Developer Guide 6-33

Chapter 6

GetDLLDir

Description This function returns the full path to the eware.dll.

Parameters None

Return Value String

GetInstallDir

Description This function returns the name of the folder on the server where the install
is.

Parameters None

Return
Value

String

For example:

Please refer to Developer Help files for code sample.

Param

Description Use this to get back a parameter value.

Parameters Pr_SearchNam: Parameter value name.

ProgressScriptTransaction

Description This function will commit (to the database) what has already been
processed and start a new transaction.

Parameters CommitOnError (optional) – Commit db transactions even if there was an
error.

Return
Value

None

QueryResultsToFile

Description This function runs a given SQL select statement and writes the results to
a CSV file on the server.

Parameters FileName: String. This should be the full path and file name of the file to
write to.
QueryString: String. This should be a SQL select statement.

Return
Value

String

With either an error message or amessage saying how may rows were
exported. For example:

Please refer to Developer Help files for code sample.

6-34 Sage CRM

Chapter 6: Component Manager

RunSQL

Description RunSQL allows you to execute any sql statement, from simple things to
inserting or updating a record, to creating and dropping tables and views.
It can be used to handle scripting that can’t be accomplished by one of
the other methods.

Any SQL Script will execute here, so great care should be
taken when using this method. In particular, extensive
testing is recommended before using RunSQL in a
production environment.

Parameters Sql: The SQL Script

Return
Value

None

SearchAndReplaceCustomFile

Description Used to search for and replace text in a specified file.

Parameters Sr_FileName: The filename including the full path;
Sr_StringToSearch: String;
Sr_ReplaceString: String;

SearchAndReplaceInDir

Description Used to search for and replace text in all files in a specified directory.

Parameters ADirPath: String
AStringToSearch: String
AReplaceString: String

SearchAndReplaceInFile

Description Used to search for and replace text in a specified file. File must be
located in <installdir>\CustomPages\ directory

Parameters Sr_FileName: String;
Sr_StringToSearch: String;
Sr_ReplaceString: String;

TableExists

Description Returns true if the specified table exists in the custom_table

Parameters TableName

Return Value Boolean

Developer Guide 6-35

Chapter 6

Component Manager Scripting Examples
This section takes you through the following examples:
Example: Multiple Installs (page 6-36)
Example: Changing A Screen Name (page 6-36)
Example: Adding A Message (page 6-36)
Example: Copying An ASP Page (page 6-37)
Example: Replacing Text In An ASP Page (page 6-37)
Example: Creating A New Table (page 6-37)
Example: Adding A New Column (page 6-37)
Example: Using the DataFile Object (page 6-38)
Example: Adding a New View (page 6-38)

Example: Multiple Installs

You can specify that a component can be used for multiple installs. Youmight find this useful if you
install a component, make further customization changes, and then want to undo them. Rather than
undoing the changes manually, you can simply reinstall the component on a clean CRM install.

To specify that a component can be used for multiple installs:

1. Open the ECF file, and typemultipleinstalls=y.
2. Save the change youmade.

Example: Changing A Screen Name

To change a screen name, for example from DemoScreen1 to Demo:

1. Open theECF file, and type:
Params:

Text Name=ScreenName,Caption=Type new screen name here,Required=True

2. Open theES script file and change the following script:
AddCustom_ScreenObjects('DemoScreen1','Screen','Opportunity', 'Y','0','','','');

To
AddCustom_ScreenObjects('Param(ScreenName'),'Screen','Opportunity',

'Y','0','','','');

3. Save both files and proceed to install the component.
4. When the Parameter Info input screen displays, typeDemo in the Screen Name field, and

click Continue. When you install the component, DemoScreen1 is renamedDemo and the
record is added to the custom ScreenObjects Table.

Example: Adding A Message

To add amessage to the end of an installation:

1. Open theECF file, and type:
Params:

Text Name=EntityName,Caption=Enter new name

2. Open theES script file and add the following script:
AddMessage('A new screen called '+Param('EntityName')+' was installed into CRM.');

3. Save both files and proceed to install the component.

6-36 Sage CRM

Chapter 6: Component Manager

4. When the Parameter Info screen displays, typeDemo in the Entity Name field, and select the
Continue button.

5. When you install the component, the followingmessage will display at the end of the
installation: "A new screen called Demowas installed into CRM".

Example: Copying An ASP Page

To copy an ASP page from one location to another:

1. Open theES script file and add the following script:
CopyAspTo('custompages\\subfolder\\edit.asp','custompages\\subfolder\\edit.asp');

2. When you install the component, EDIT.ASP will be copied from the Phase1 component
directory to the following location in the current installation:
\custompages\subfolder\edit.asp

Example: Replacing Text In An ASP Page

To search for and replace text in an ASP page:

1. Open theES script file and add the following script.
SearchAndReplaceInFile('Edit.asp','Find','Search');

2. When you install the component, any instances of the word Find in EDIT.ASP are replaced
with the wordSearch.

Example: Creating A New Table

To create a new table:

1. Open theES script file and add the following script:
CreateTable('DemoTable','dem','demo','false','false','false');

2. When you install the component, a table calledDemoTablewill be added to CRM. The
following columns will be automatically created for the table:

Dem_TableId
Dem_ System
Dem_CreatedBy
Dem_CreatedDate
Dem_UpdateBy
Dem_UpdateDate
Dem_ TimeStamp
Dem_Deleted

Example: Adding A New Column

To create a new column:

1. Open theES script file and add the following script:
AddColumn('DemoTable','Dem_Description',10,'(25)','True','False');

Developer Guide 6-37

Chapter 6

2. When you install the component, a column calledDem_Descriptionwill be added to the
DemoTable created in Example: Creating A New Table (page 6-37).

Example: Using the DataFile Object

The following is an example of using theDataFile object to loop through the rows in a spreadsheet
and perform actions with the values found.

l Open theES script file and add the following script:
var MyFile = FileOpen('c:\\data\\mydata.xls');

var i = 0;

while (!MyFile.EOF)

{

i = 0;

while (i < MyFile.FieldCount)

{

sValue = MyFile.GetField(i);

//do something with value

i++;

}

MyFile.NextRow();

}

Example: Adding a New View

The following is an example of a component script for adding a view. This example also shows the
use of the iDatabase variable.
To add a view:

l Open theES script file and add the following script:
Please refer to Developer Help files for code sample

6-38 Sage CRM

Chapter 7: Graphics and Charts

In this chapter you will learn how to:

l Get an overview of charts.
l Get an overview of effects for pie charts only.
l Get an overview of special effects for charts.
l Use external data to create charts.
l Work with chart examples.
l Get an overview of graphics.
l Get an overview of graphics formats.
l Discuss performance tips for using graphics.
l Use external images.
l Work with graphics examples.
l Get an overview of graphics effects.
l Get an overview of animation.

Introduction
This section provides an introduction to how to implement Sage CRM Graphics and Charts in an ASP
 page:

l Graphics Overview (page 7-8)- Graphics can be generated dynamically within CRM. They can
also be data aware and therefore representative of data stored at the time the graphic is
generated.

l Charts Overview (page 7-1) - Charts directly inherit from Graphics and are an extension of the
Graphic Block that allow the production of different types of charts. As such they can be
generated dynamically within CRM. They can also be data aware and therefore representative
of data stored at the time the chart is generated. Much of what can be applied for graphics
applies to charts.

Charts Overview
Charts directly inherit from Graphics and are an extension of the Graphic Block that allow the
production of different types of charts. As such they can be generated dynamically within CRM. They
can also be data aware and therefore representative of data stored at the time the chart is generated.
Much of what can be applied for graphics applies to charts.Charts, like graphics, can be generated
with just a few commands, or customized at length.
From v7.1 animated and interactive charts based on Fusion Charts v3.2 (www.fusioncharts.com) are
available.

Fusion Charts are rendered as JPGs in ASP and .NET.

Pre-v7.1 charts map to Fusion Charts as follows:

Pre v7.1 Chart Type Fusion Chart Type

Line Line

Developer Guide 7-1

http://www.fusioncharts.com/

Chapter 7

Pre v7.1 Chart Type Fusion Chart Type

Bar Column2D

Area Area2D

Point Line

HBar Bar2D

Pie Pie2D

FastLine Line

Fusions Charts System Parameters
The following system parameters can be used to influence the appearance of Fusion Charts.

System Parameter Description

ChartTimeoutSeconds Timeout in seconds for the fusion charts being
converted to images for display in Sage CRM

ChartUseFlash Master switch for toggling between Flash and
images

ChartOverruledWidthID OverruleWidth for Interactive Dashboard chart
width

ChartOverruledHeightID Overrule Height for Interactive Dashboard
chart height

ChartOverruledWidthCD OverruleWidth for Classic Dashboard chart
width

ChartOverruledHeightCD Overrule Height for Classic Dashboard chart
width

ReportsShowTextErrorInsteadOfImage Works in collaboration with ChartUseFlash -
allows errors (no data and no flash to be
displayed as customized images in
accordance with the filenames below)

Pie Chart Only Effects
These are effects that can only be applied to a populated pie chart.

l RotatePie. Performing the same as rotation but specific to pie charts to produce a smoother
effect. For example:
Effect('RotatePie','45');

l PiePatterns. Specific to Pie Charts, this effect allows for patterns to be used in pie charts.
This could provemore effective for printing. For example:
Effect('PiePatterns','true');

7-2 Sage CRM

Chapter 7: Graphics and Charts

l ExplodePie. This can extract a slice of a pie chart by a varying amount. The first parameter is
the index of the slice and the second is the amount. For example:
Effect('Explode','6,20');

Special Effects For Charts
When using a Chart Block, the effect command provides a host of new effects that can be applied to
a chart, in addition to the effects described previously. Note that these effects can be carried out in an
ASP scripting loop and reproduced as part of an animation.

l Elevation, This describes front plane rotation and can take a value from -90 to 90 degrees of
elevation. For example:
Effect ('Elevation','45');

l Perspective. This sets the view of the chart with perspective effect. The value passed to it is
a percentage from 0 to 100. For example:
Effect('Perspective','45');

l Tilt. This carries out a rotation on the chart within the Chart Panel. Values passed to it from 0
to 360 rotate it anti-clockwise, and negative values rotate it clockwise. For example:
Effect('Tilt','10');

l Rotation. Rotation describes front plane rotation by the specified degrees. Increasing the
value positively brings the right of the Chart towards the viewer and the left of the Chart away,
moving around a vertical axis at the central horizontal point of the Chart. For example:
Effect('Rotate','45');

l HorizOffset. This can displace the position of a chart horizontally by the number of pixels
specified. For example:
Effect('HorizOffset','45');

l VertOffset. This can displace the position of a chart vertically by the number of pixels
specified. For example:
Effect('VertOffset','45');

Using External Data for Charts
Bubble Charts
For Bubble Charts, themanual chart entry takes on this form:

ManualChartEntry("Xpos,Ypos,Radius [,Label] [,Color]);

For example:

// Adds a bubble of radius 5 at 100,100

ManualChartEntry('100,100,5',false);

// Given the label "Jan"

ManualChartEntry('100,100,5,Jan',false);

// Drawn in Yellow

ManualChartEntry('100,100,5,Jan,Yellow',false);

Developer Guide 7-3

Chapter 7

Chart Examples

Example: Adding a New Chart

Add a Bar Chart that Shows Opportunity Forecast
For this example, CRM connects to the opportunity table and obtains the information for opportunity
forecasts. The chart must be aware of the user's context. It needs a field to uniquely identify the
current opportunity. From v7.1, Fusion Charts v3.2 are used, this means charts may need to be
resized usingmychart.Resize(600,600).To create a chart for opportunity forecast, you need to:

1. Add a new tab that links to a custom page.
2. Create the custom page to display the chart of the opportunity forecast for the current

opportunity.To create the custom page to display the chart of the forecast for the current
opportunity:

3. Retrieve the identifying value for the current Opportunity and assign it to a variable:
Var

OppId=CRM.GetContextInfo('opportunity','oppo_opportunityid');

4. Create a block for the chart and assign it to a variable:
var chart;

chart=CRM.GetBlock('chart');

5. Issue commands to the chart to define its data and style:
with (chart)

{

Stylename('Area');

Title='Forecast over time';

Description='Forecast of Opportunity over time';

Resize(600,600);

ShowLegend(false);

MinY=0;

LabelX='Date';

LabelY='Forecast';

XProp="Oppo_Forecast";

XLProp="Oppo_CreatedDate";

YProp="Oppo_Forecast";

SQLText='Select * from OpportunityProgress Where

'+'(Oppo_OpportunityId='+OppId+') and '

+'(Oppo_Forecast is not null) and '

+'(Oppo_Forecast>0)';

}

6. Write the chart to the screen by executing the Chart Block:
CRM.AddContent(chart.Execute());

Response.Write(CRM.GetPage());

To view the results, select an opportunity, click the chart tab and a chart of the forecast for that
opportunity is displayed.

The Chart.asp file is displayed below:

7-4 Sage CRM

Chapter 7: Graphics and Charts

<!-- #include file ="sagecrm.js" -->

<BODY>

<%

/* Find the current opportunity id in CRM and store it as

text to be included in sql queries for the

charts */

var

OppId=CRM.GetContextInfo('opportunity','oppo_opportunity

id');

//The chart variable contains the block to be retrieved.

var chart = CRM.GetBlock('chart');

//The chart commands establish the style of the chart

with (chart)

{

Stylename('Area');

Title='Forecast of Opportunity Over Time';

Description='Forecast of Opportunity over time';

Resize(600,600);

ShowLegend(false);

MinY=0;

LabelX='Date';

LabelY='Forecast';

XProp="Oppo_Forecast";

XLProp="Oppo_CreatedDate";

YProp="Oppo_Forecast";

/* Data represented in the chart is created through SQL.

The SQLText command specifies the records to be used.

The example states that we wish to look at all opportunity

progress tracking records for the current chart.*/

SQLText='Select * from OpportunityProgress Where '

+'(Oppo_OpportunityId='+OppId+') and '

+'(Oppo_Forecast is not null) and '+'(Oppo_Forecast>0)';

}

CRM.AddContent(chart.Execute());

Response.Write(CRM.GetPage());%>

</BODY>

</HTML>

Adding a Fusion Chart in OnCreate script

For example:

strChart = "<script type='text/javascript'

src='../FusionCharts/FusionCharts.js'></script>";

strChart += "<div id='chartContainer'>FusionCharts will load here!</div>";

strChart += "<script type='text/javascript'>";

strChart += "var myChart = new FusionCharts('../FusionCharts/Column3D.swf',

'myChartId', '400', '300', '0', '1');";

strChart += "myChart.setDataURL('../CustomPages/Data.asp');";

strChart += "myChart.render('chartContainer');</script>";

CRM.AddContent(strChart);

Adding a Fusion Chart in Custom Content

For example:

<script type="text/javascript" src="../FusionCharts/FusionCharts.js">

</script>

Developer Guide 7-5

Chapter 7

<div id="chartContainer">FusionCharts will load here!</div>

<script type="text/javascript">

var myChart = new FusionCharts("../FusionCharts/Column3D.swf", "myChartId",

"400", "300", "0", "1");

myChart.setDataURL("../CustomPages/Data.asp");

myChart.render("chartContainer");

</script>

Example: Organization Chart
TheOrganizational Charting Block, or 'Org Chart', can be used to create a relationship diagram
through ASP. This block is a descendant of the Graphic Block and inherits and builds upon all the
properties andmethods available. Organizational charts can be customized in terms of appearance
and the data they represent. They can also be hyperlinked-URLs can be specified through ASP to
determine what should happen if a user clicks on a particular entry. This allows greater interaction
with the user and provides useful links to whatever the various entries are representing.

You can also use the Related Entities feature to set up and view complex relationship
types between primary entities. See the System Administrator Guide for more
information on Related Entities.

Adding a Diagram to Show Relationships Between Companies

1. First you need to call an instruction to assign an org chart to a variable:
var org;

org=CRM.GetBlock('orgchart');

2. To demonstrate how to use the Org Chart Block effectively, assume that a relationship exists
between a number of companies. Lets say that a corporation known as "ABC International"
has three subsidiaries-ABC Health, ABC Travel, and ABC Entertainment. In an organizational
diagram, "ABC International" is at the top. To add the first entry, use the OrgTree command in
the form of:
OrgTree(

'Add',

'[ParentName],[Name],[Child=true/false],[Url],[Description],[Relationship]'

);

3. ABC International is the first entry. It is not a child of anything else.
org.OrgTree('Add',',ABC International,false');

4. This gives a basic entry. Youmay want to addmore to it in terms of functionality. For example,
if the user clicks on it, they are directed to the company Web page. To do this add the entry
using:
org.OrgTree('Add',',ABC International,false,www.abc.com');

5. You can now add the subsidiaries of this company. Use the same structure as before,
however, tell the OrgChart Block that the next entries you are adding have a parent called
'ABC International'. You also need to say that these are children, as opposed to siblings, so
that the block can then place the new entries beneath 'ABC International'. The URL for these
entries can be left blank, but you need to add the relationship each one has with the parent.

7-6 Sage CRM

Chapter 7: Graphics and Charts

org.OrgTree('Add','ABC International,ABC Health,

true,www.abc.com/health,,Subsidiary');

org.OrgTree('Add','ABC International,ABC Travel, true,

www.abc.com/travel,,Subsidiary ');

org.OrgTree('Add','ABC International,ABC Entertainment,

true,www.abc.com/entertainment,Subsidiary');

6. Now call the block:
Response.Write(org.Execute());

7. The default styles used for the org chart are rounded boxes and arrows that show the
connection between different entries. The arrows do not effectively show the relationship
between the various entries, so you need to change the line style to a ray. Different
relationships produces different ray colors and hovering over the ray gives a relationship
description. You can also change the style of boxes to be square at this point. You do this by
adding the following line before the Execute statement is called:
OrgTree('LineStyle','Ray');

OrgTree('BoxStyle','Square');

TheOrgChart.asp file is displayed below:

<HTML>

<!-- #include file ="sagecrm.js" -->

<BODY>

<% var org;

org=CRM.GetBlock('orgchart');

org.OrgTree('Add',',ABC International,false,www.abc.com');

org.OrgTree('Add',

'ABC International,ABC Health, true,www.abc.com/

health,,Subsidiary');

org.OrgTree('Add',

'ABC International,ABC Travel, true,www.abc.com/

travel,,Subsidiary ');

org.OrgTree('Add',

'ABC International,ABC Entertainment, true, ' +

'www.abc.com/entertainment,,Subsidiary ');

org.OrgTree('LineStyle','Ray');

org.OrgTree('BoxStyle','Square');

CRM.AddContent(org.Execute());

Response.Write(CRM.GetPage());%>

</BODY>

</HTML>

Setting Parameters for the Organizational Graphic
Backgrounds and Icons
Icons and different backgrounds for the entities can be employed. Icons are referred to by the
parameter 'EntityIcon' and backgrounds can be changed with the parameter 'EntityImage'. These can
be in any of the formats that can be handled by the Graphic Block. This can be done by pointing to the
image you wish to use in the following ways:

OrgTree('EntityIcon','c:\\entityimage.bmp');

OrgTree('EntityImage','c:\\back.jpg')

Title

Developer Guide 7-7

Chapter 7

By default, no title is added. A title can be added using the following:

org.OrgTree('Title','Structure of ABC International');

Dimensions
Various dimensions for the elements within the Organizational Block can help determine its size and
appearance. The Full Box Height andWidth describes the number of pixels, including outside the
box, that each entity occupies. The standard box width and height properties describe only the
dimensions of the box itself without consideringmargins or the outside area. Changing these values
can determine the entire overall screen estate that the organizational chart occupies. These
parameters can be set as follows:

OrgTree('FullBoxHeight','50'); //Default 100

OrgTree('FullBoxWidth','88'); //Default 200

OrgTree('BoxWidth','40'); //Default 75

OrgTree('BoxHeight','25'); //Default 40

Line and Box Styles

By default, the boxes are rounded and an arrow is used as the line style. However, this can be easily
changed. The box style can either be 'Square' or 'Rounded'. The line style can be 'Ray', 'Line' or
'Arrow'. This can be done using the following commands:

OrgTree('LineStyle','Arrow');

OrgTree('LineStyle','Line');

OrgTree('LineStyle','Ray');

OrgTree('BoxStyle','Square');

OrgTree('BoxStyle','Round');

Animation
By default, the organizational chart uses animation at a delay of 30ms and draws out each of the
nodes in turn. This can be switched off so that all the nodes appear at the same time. Note also that
the organizational chart as a graphic has access to the Animation command to cater for delay and
loop parameters. Animation can be toggled in the following way:

OrgTree('Animation','false');

Legend

With the new ray line style indicating the relationship between two entries, a legendmay appear to
show what the colors represent. This can be switched off using:

OrgTree('ShowLegend','false');

Graphics Overview
Graphics can be generated dynamically within CRM. They can also be data aware and therefore
representative of data stored at the time the graphic is generated.
A graphic can be customized to vary depending on the user that displays it, with little or no changes
made by the author of the ASP.
Graphics can be generated with just a few commands, or customized at length. See Example: Adding
a New Graphic (page 7-10) for an example of an ASP page for dynamically generating a graphic.

Graphics Formats
The CRMGraphic Block currently supports the following different graphics formats:

7-8 Sage CRM

Chapter 7: Graphics and Charts

Graphic Format Description Characteristics

JPEG Work of the Joint Photographic Experts
Group

16million colors (24 bit).
High level of compression (small file
size).
Default format used for graphics
and charts.

GIF Graphics Interchange Format 256 colors (8 bit).
High level of compression (small file
size).
Animation and Transparency
supported.

BMP Bitmap as commonly used inMicrosoft
Windows

Various color depths.
No compression (large file size).

The characteristics of these formats are particularly important as they can affect the image quality of
your graphic or chart.
By default, the JPEG image format is used.

JPEG vs GIF Images

var graphic;

graphic=CRM.GetBlock('graphic');

graphic.SaveAsGifs=true;

Where animation and transparency are not required, JPEG images are recommended instead of GIFs
as they allow your image to contain amuch greater color depth. Fusion charts are rendered as jpeg in
ASP and .NET, they are rendered as Flash in the classic and interactive dashboard.

Graphics Performance Tips
Avoid Large Images
Windows has limitations in handling very large bitmaps and the "breaking point" differs considerably
among various PCs. Windows and the video device driver cause the limitation.

Use GIF Images Where Possible
Windows has limitations in handling very large bitmaps and the "breaking point" differs considerably
among various PCs. Windows and the video device driver cause the limitation.

<SCRIPT language=Javascript>

if (screen.colorDepth<=8) {graphic.SaveAsGifs=true}

</SCRIPT>

Be Conservative with Animations
On a client machine, large animations can consume a lot of processor time. Imagine a 50-frame
animatedGIF that is 250 x 250 pixels using 24-bit color. When decompressed, all 50 frames requires
roughly 9MB of data if stored inmemory simultaneously (250 * 250 * (24/8) * 50). If the GIF is
animated over three seconds, for example, that is 3M/second of data, which requires a lot of
processor power. When an animatedGIF is looping, the browser does not simply repeatedly display
image frames that were decoded in earlier iterations. This requires 9MB of data to be kept in memory.
Instead, the image is continually re-decoded from a copy of the animation that is stored on disk.
Therefore processor power is used instead of consuming large amounts of memory.

Developer Guide 7-9

Chapter 7

External Images
Images can be saved and loaded from the server. For Graphic Blocks, they may be used to generate
part of the image.

Note that the Graphic Block always converts any loaded image to a JPEG or GIF image,
as these are the standard types supported by Web browsers.

Graphics Examples

Example: Adding a New Graphic
To demonstrate how to use the CRMGraphic Block effectively, follow this example on how to create
a progress bar. The progress bar illustrates Opportunity Certainty for the current opportunity.
To create a graphic for opportunity certainty, you need to:

l Add a new tab that links to a custom page.
l Create the custom page to display the graphic of the opportunity certainty for the current

opportunity.
To create the custom page:

1. Retrieve the identifying value for the current Opportunity Certainty and assign it to a variable:
var Progress=CRM.GetContextInfo('opportunity','oppo_certainty');

2. Create a block for the graphic and assign it to a variable:
var progressbar; progressbar=CRM.GetBlock('graphic');

3. Issue commands to the progress bar to define the dimensions and style of the graphic (see the
Progress.asp example below).

4. Write the graphic to the screen by executing the Graphic Block.
CRM.AddContent(progressbar.Execute());

Response.Write(CRM.GetPage());

To view the results, go to an opportunity, click the new tab you created.
The following script is the complete Progress.asp file:

<!-- #include file ="sagecrm.js" -->

<HTML>

<BODY>

<%var progress=CRM.GetContextInfo('opportunity','oppo_certainty'); var progressbar;

progressbar=CRM.GetBlock('graphic');

with (progressbar)

{

ImageWidth=100;

ImageHeight=20;

Description='Opportunity Certainty';

GradientFill('Blue','White','L',256);

MoveTo(0,0);

LineTo(99,0);

LineTo(99,19);

LineTo(0,19);

LineTo(0,0);

Rectangle(0,0,100,20);

7-10 Sage CRM

Chapter 7: Graphics and Charts

TextOut(40,1,progress+'%',true);

}

CRM.AddContent(progressbar.Execute());

Response.Write(CRM.GetPage());

%>

</BODY>

</HTML>

Example: Pipeline
The Pipeline Block is an extension of the Graphic Block. The pipeline graphic can be used to
represent data over a chosen cross section. This block is a descendant of the Graphic Block and
inherits and builds upon all the properties andmethods available.
The Pipeline graphic block automatically displays in the Opportunities, Cases and Leads list screens
in the context of My CRM, Company, People, Opportunity, Case, and Lead. When you click on a
section of the pipeline, the relevant list is filtered to show only the section that you clicked on.

Adding a Pipeline to Show the Value of Opportunities
The following example displays the forecasted value of all opportunities for a company for all of the
opportunities in their various stages. It acts as an instantly recognizable barometer of the data that it
represents.
Within the ASP youmust inform the pipeline of the user's context. It also needs a field to uniquely
identify the current company.
To create a pipeline for opportunity forecast, you need to:

l Add a new tab to the company context that links to a custom page.
l Create the custom page to display the pipeline with the opportunity forecast for the current

company.
To add a new tab to the company context that links to a custom page:

1. Click theAdministration button in themainmenu.
2. Select Customization from the context area of the screen
3. Select theCompany context.
4. Select Customize Tabs and click the hyperlink for the Company tabs.
5. Add a name for the new tab in the Captions field.
6. In the Action field select customfile from the list.
7. In the Custom File field enter the name of the ASP file.
8. Choose theUpdate button and then theSave button

To add a new tab to the company context that links to a custom page:

1. Click theAdministration button in themainmenu.
2. Select Customization from the context area of the screen
3. Select theCompany context.
4. Select Customize Tabs and click the hyperlink for the Company tabs.
5. Add a name for the new tab in the Captions field.
6. In the Action field select customfile from the list.
7. In the Custom File field enter the name of the ASP file.
8. Choose theUpdate button and then theSave button.

To create the custom page to display the chart with all the forecasts for the current opportunity:

Developer Guide 7-11

Chapter 7

1. Retrieve the identifying value for the current Opportunity and assign it to a variable:
var

CompId=CRM.GetContextInfo('company','comp_companyid')

;

2. Create a block for the pipeline and assign it to a variable:
var pipe=CRM.GetBlock('pipeline');

3. Using the Record object, retrieve details about the opportunities and add these to the pipe
using the Pipeline. Entries are added to the pipe using the AddPipeEntry command using the
following format:
AddPipeEntry([Name],[Value],[Description],[Url]);

4. Issue commands to the pipeline to define its data:
var SQLPipe='select sum(Oppo_Forecast) as a,'

+'Oppo_Stage from vOpportunity '

+'where (Oppo_PrimaryCompanyid='+CompId+') '

+'group by Oppo_Stage order by Oppo_Stage';

var Querypipe=CRM.CreateQueryObj(SQLPipe);

Querypipe.SelectSQL();

var pipe=CRM.GetBlock('pipeline');

var SQLPipe='select sum(Oppo_Forecast) as a,'

+'Oppo_Stage from vOpportunity '

+'where (Oppo_PrimaryCompanyid='+CompId+') '

+'group by Oppo_Stage order by Oppo_Stage';

var Querypipe=CRM.CreateQueryObj(SQLPipe);

Querypipe.SelectSQL();

var pipe=CRM.GetBlock('pipeline');

pipe.Pipe_Summary='<TABLE>'<TD

Class=TableHead>Qualified(70)'</TD>'</Table>';

Response.Write(pipe.Execute());

else {Response.Write(ErrMsg);}

5. Customize the look of the pipeline graphic.
with(SQLPipe)

{PipelineStyle('SelectedWidth','10');

PipelineStyle('SelectedHeight','10');

PipelineStyle('PipeWidth','10');

PipelineStyle('PipeHeight','60');

PipelineStyle('Margin','100');

PipelineStyle('Shape','Circle');

PipelineStyle('UseGradient','True');

PipelineStyle('Animated','False');

PipelineStyle('Selected','');

PipelineStyle('SelectedWidth','10');

PipelineStyle('SelectedHeigth','10');

PipelineStyle('ShowLegend','True');

PipelineStyle('ChooseBackGround', '5');

}

6. Save the ASP file with the same name as you used when creating the tab, to the Custom
Pages folder of your CRM directory.
SamplePipeline.asp is displayed below

7-12 Sage CRM

Chapter 7: Graphics and Charts

<!-- #include file ="sagecrm.js" -->

<%=Body%>

<%var

CompId=CRM.GetContextInfo('company','comp_companyid');

var SQLPipe='select sum(Oppo_Forecast) as a,'

+'Oppo_Stage from vOpportunity '

+'where (Oppo_PrimaryCompanyid='+CompId+') '

+'group by Oppo_Stage order by Oppo_Stage';

var Querypipe=CRM.CreateQueryObj(SQLPipe);

Querypipe.SelectSQL();

var pipe=CRM.GetBlock('pipeline');

with(pipe)

{

PipelineStyle('SelectedWidth','10');

PipelineStyle('SelectedHeight','10');

PipelineStyle('PipeWidth','10');

PipelineStyle('PipeHeight','60');

PipelineStyle('Margin','100');

PipelineStyle('Shape','circle');

PipelineStyle('UseGradient','True');

PipelineStyle('Animated','False');

PipelineStyle('Selected','');

PipelineStyle('SelectedWidth','10');

PipelineStyle('SelectedHeigth','10');

PipelineStyle('ShowLegend','True');

PipelineStyle('ChooseBackGround', '5');

}

while (!Querypipe.EOF)

{

Label=Querypipe('Oppo_Stage');

Value=Querypipe('a');

pipe.AddPipeEntry(Label,parseFloat(Value),Value+"");

Querypipe.Next();

}

pipe.ChooseBackGround(1);

// Setting the active section of the pipeline. This

can be altered to be variable controlled

pipe.Selected=2;

// The summary allows the addition of any desired

text in html format, allowing summary

// tables etc for the selected pipe section. This

example shows a simple hard coded value.

pipe.Pipe_Summary='<TABLE><TD

Class=TableHead>Qualified(70)</TD></Table>';

CRM.AddContent(pipe.Execute());

Response.Write(CRM.GetPage());

//else {Response.Write(ErrMsg);}

%>

</BODY>

</HTML>

Setting Parameters for the Pipeline Graphic
Dimensions and Sizes

'SelectedWidth','10');

PipelineStyle('SelectedHeight','10');

PipelineStyle('PipeWidth','40');

Developer Guide 7-13

Chapter 7

PipelineStyle('PipeHeight','60');

PipelineStyle('Margin','100');

Shape

PipelineStyle('Shape','Circle');

PipelineStyle('Shape','Rounded');

PipelineStyle('Shape','Rectangle');

Other Appearance Changes

PipelineStyle('UseGradient','True');

PipelineStyle('Animated','True');

PipelineStyle('Selected','Sold');

PipelineStyle('Selected','');

PipelineStyle('ShowLegend','False');

Graphic Effects Basics

Change Image Color
There is also the facility to change one particular color to another in an image. For instance, all
instances of the color blue could be changed to red using the following command:

Effect('ChangeColor','Blue,Red');

Clear An Image
To clear an image completely, and for example wash it with a particular color, the Clear effect is
available. If no color is specified, then the canvas is cleared as white.

Effect('Clear','Blue');

Display Errors
WhenCRM catches an error, it produces a graphic by default that lists that error and other errors.
This can be switched off using:

Effect('DisplayErrors','false');

Drawing Functions
There is a wide variety of commands available to the Graphic Block.

Pen
The pen function details the style behind which the drawings are carried out. Commands such as
LineTo and Arc use the current pen style to determine their output.
The functions available through the Pen command include:

Color
The color of the pen can be specified using the following syntax:

Pen('Color','Blue');

PenColor('Blue');

7-14 Sage CRM

Chapter 7: Graphics and Charts

Width
The pen width specifies the thickness of the pen in drawing actions and takes a number as its value
parameter.

Pen('Width','3');

PenWidth('3')

Style
The Style command can be used to draw a dotted or dashed line, or to omit the line that appears as a
frame around shapes. There are various values that Style can take:

Value Line style

Solid Solid (Default)

Dash Dashes

Dot Dots

DashDot Alternating dashes and dots.

DashDotDot Series of dash-dot-dot combinations.

Clear No line is drawn (can be used to omit the line around shapes that draw an
outline using the current pen).

Examples include:

Pen('Style','Dot');

Pen('Style','Solid');

Pen('Style','Clear');

Brush
The brush function is used to fill solid shapes, such as rectangles and ellipses, with a color or pattern.
The patternmay be a predefined image, which is loaded into the brush. The functions available
through the 'Pen' command include:

l Color. The color of the brush can be specified using the following syntax:
Brush('Color','Blue');

l Load. An image can be loaded into the brush and used in all painting effects. The image format
that can be loaded can be any one of those supported for import by the Graphic Block-namely
.ico, .emf/.wmf, .bmp, .gif and .jpg. This is done using the following syntax:
Brush('Load','c:\\winnt\\winnt.bmp');

l Fill. Carries out a fill command in the graphic using the current brush. It takes four parameters
in the form of a rectangle to specify the area to be filled in. These are Left, Top, Right, and
Bottom respectively. For example:
Brush('Fill','0,0,100,100');

l Style. Allows the use of a number of predefined brushes for filling in drawing functions. These
are:

Developer Guide 7-15

Chapter 7

l Bdiagonal
l Clear
l Cross
l DiagCross
l Fdiagonal
l Horizontal
l Solid
l Vertical

For example:

Brush('Style','DiagCross');

Font
The font function determines the way TextOut and TextOutCenter commands are performed. Modes
available include:

l NameChanges the current typeface. Be sure that the font is installed on the server. Note that
Truetype fonts provemore effective when performing the rotate font function.
Font('Name','Times New Roman');

l SizeDetermines the size of font to be used.
Font('Size','24');

FontSize('24');

l Color Specifies the color of writing to use.
Font('Color','Blue');

FontColor('Blue');

l Styles available The following styles can be toggled in the following ways:
Font('Underline','True');

Font('Italic','False');

Font('Strikeout','False');

l Rotation A rotation effect can be applied to all text output. To ensure success, use True type
fonts. Simply specify Rotate with the desired angle and all TextOut and TextOutCenter
commands now show the font in a rotated form.
Font('Rotate','45');

Merging
An external image can bemerged onto a graphic. A color is also passed as the transparent color for
the external image. The position of this external image can be specified with X and Y parameters.
Otherwise it simply appears starting from 0,0 in the top left hand corner of your image.

Effect('Merge','c:\\Person.ico');

Effect('Merge','c:\\Person.ico,50,50');

7-16 Sage CRM

Chapter 7: Graphics and Charts

Special Effects
Through the use of the graphics command, various effects can be applied to a graphic object. These
include dithering, zooming, and transparency.

l Dithering There are six different dithering functions that can be applied to an image. They can
help to improve its appearance, especially where color is limited. These establishedmodes
are

l Burkes
l FloydSteinberg
l JaJuNi
l Sierra
l SteveArche
l Stucki

A command such as the following is be used to apply one of thesemodes to an image:

Effect('Dither','FloydSteinberg');

l Zooming An image can bemagnified using the zoom parameter together with a percentage of
zoom required. The area to be zoomed is, by default, the center of the image.
Effect('Zoom','200');

l TransparencyAvailable only in GIF images, enabling transparency causes any whiteness
contained within an image to become transparent. On aWeb browser, this shows any applied
image to that area. Transparency can be toggled in the followingmanner:
Effect('Transparency','true');

Animation

Adding Frames
This allows the state of your current graphic to be the next frame in your animation. If no frames have
been added previously, this is the first frame in the animation. The second parameter specifies the
time period for which this frame is shown.

Animation('Add','50');

Leaving the delay parameter blank results in the default delay being used. For example:

Animation('Add','');

Delay
To specify the default delay for frames, use the delay procedure with the desired value.

Animation('Delay','50');

Loops
An animation can be looped a specific number of times or indefinitely. By default, an animation is
shown once (1). To have an animation repeat indefinitely, specify the value 0.

Animation('Loop','0');

Developer Guide 7-17

Chapter 7

ASP Example
This is a sample animation.asp file:

<!-- #include file ="sagecrm.js"-->

<% var anim;

var progress=70;

anim=CRM.GetBlock('graphic');

with (anim) {

ImageWidth=130;

ImageHeight=20;

Pen('Color','Black');

MoveTo(0,0);

LineTo(99,0);

LineTo(99,19);

LineTo(0,19);

LineTo(0,0);

Rectangle(0,0,100,20);

Pen('Color','Blue');

for (y=1;y<=progress;y++)

{MoveTo(y,1);

LineTo(y,19);

TextOutCenter(101,0,129,19,y+'%',false,false);

Animation('add','10')}

}

container=CRM.GetBlock('container');

with (container)

{AddBlock(anim);

displaybutton(Button_Default)=false;}

CRM.AddContent(container.Execute());

Response.Write(CRM.GetPage());

%>

7-18 Sage CRM

Chapter 8: ASP Object Reference

In this chapter you will learn how to work with:

l AddressList Object
l Attachment Object
l AttachmentList Object
l CRMObject
l CRMBaseObject
l CRMBlock Object
l CRMChartGraphicBlock Object
l CRMContainerBlock Object
l CRMContentBlock
l CRMEntryBlock Object
l CRMEntryGroupBlock Object
l CRMFileBlock Object
l CRMGraphicBlock Object
l GridColBlockObject
l CRMListBlock Object
l CRMMarqueeBlock Object
l CRMMessageBlock Object
l CRMOrgGraphicBlock Object
l CRMPipelineGraphicBlock Object
l CRMQuery Object
l CRMRecord Object
l CRMSelfService Object
l CRMTargetListField Object
l CRMTargetListFields Object
l CRMTargetLists Object
l Email Object
l MailAddress Object
l MsgHandler Object

Developer Guide 8-1

Chapter 8

Introduction to the ASP Object Reference
This section details the properties andmethods of the CRM objects and blocks.
There is a quick reference table here.
Note that in examples throughout this Developer Guide, the CRM object is referred to as 'CRM'. In
some older versions of the include file, the CRM object may be referred to as "eWare".

For example, if this returns an error:

CRM.Mode=Save;

then you can replace it with

eWare.Mode=Save;

8-2 Sage CRM

Chapter 8: ASP Object Reference

Quick Reference Table

Object/Block Property Method

CRMObject Mode AddContent(Content)
CreateQueryObj(SQL, Database)
CreateRecord(TableName)
FindRecord(TableName, QueryString)
GetBlock(BlockName)
GetCustomEntityTopFrame(EntityName)
GetPage()
GetTrans(Family, Caption)
RefreshMetaData(Family)
SetContext(EntityName, EntityID)

CRMBaseObject FastLogon
TargetLists

Button
GetContextInfo(Context, FieldName)
GetTabs(TabGroup)
Logon(LogonId, Password)
Url(Action)
ConvertValue(Avalue, AfromCurr,
AToCurr)

CRMTargetLists Object TargetListID
Category
Name
Description
ViewName
Fields
OrderByFields
WhereClause

Save()
Include(ATargetID)
Exclude(ATargetID)
Retrieve()

CRMTargetListFields
Object

Parent
Count
Item

New(CRMTargetListField)
Delete(Index)

CRMTargetListField
Object

DataField

CRMSelfService Object Authenticated
AuthenticationError
VisitorInfo

EndSSSession(QueryString,
ContentString, Cookie)
Init(QueryString, ContentString, Cookie)

Email Object Body
IsHTML
Subject
Priority
Recipients
SenderName
SenderAddress
DeliveryTime
Attachments
BCC
CC

Send()
AddFile(Value)
Clear()
Header(Value)

AddressList Object Items
Count

AddAddress(Address, Name)

MailAddress Object Name
Address

AttachmentList Object Count
Items
LibraryPath

Developer Guide 8-3

Chapter 8

Object/Block Property Method

Attachment Object Name
Extension

Save(Name, Path)
SaveAs(Name, Path)

CRMRecord Object DeleteRecord
Eof
IdField
Item
ItemAsString
OrderBy
RecordCount
RecordID

FirstRecord()
NextRecord()
RecordLock
SaveChanges()
SaveChangesNoTLS()
SetWorkflowInfo(vWorkflowName,
vWorkflowState)

MsgHandler Object Msg
Debug
EmailAddress

Log(value)
MailAdmin(Subject, Body)
GetUniqueFileName(Path, FileName)

CRMQuery Object Bof
DatabaseName
Eof
FieldValue
RecordCount
SQL

ExecSql()
Next()
NextRecord()
Previous()
SelectSql()

CRMBlock Object ArgObj
CheckLocks
DisplayForm
FormAction
Height
Name
NewLine
ShowValidationErrors
Title
ViewName
Width
Mode

Execute(Arg)
Validate()

CRMContainerBlock
Object

ButtonAlignment
ButtonImage
ButtonLocation
ButtonTitle
DisplayButton
ShowNewWorkflowButtons
ShowWorkflowButtons
WorkflowTable

AddBlock(Block)
AddButton(ButtonString)
DeleteBlock(BlockName)
GetBlock(BlockName)

CRMContentBlock Contents

CRMEntryGroupBlock
Object

ShowSavedSearch AddEntry(EntryName, Position, Newline)
DeleteEntry(EntryName)
GetEntry

8-4 Sage CRM

Chapter 8: ASP Object Reference

Object/Block Property Method

CRMEntryBlock Object AllowBlank
Caption
CaptionPos
CreateScript
DefaultType
DefaultValue
EntryType
FAM
FieldName
Hidden
JumpEntity
LookUpFamily
MaxLength
MultipleSelect
OnChangeScript
ReadOnly
Size
ValidateScript
AllowUnassigned
Restrictor
CopyErrorsToPageErrorContent

RemoveLookup

CRMListBlock Object CaptionFamily
PadBottom
prevURL
RowsPerScreen
SelectSql

AddGridCol(ColName, Position,
AllowOrderBy)
DeleteGridCol(ColName)
Execute(Arg)
GetGridCol

GridColBlockObject Alignment
AllowOrderBy
CustomActionFile
CustomIdField
JumpEntity
ShowHeading
ShowSelectAsGif

CRMMarqueeBlock Object HorizontalMaximum
HorizontalMinimum
ScrollSpeed
StyleSheet
VerticalMaximum
VerticalMinimum

CRMFileBlock Object DirectoryPath
FileName
ProperCase
Translate

CRMMessageBlock
Object

DisplayForm
mAddressFrom/mNameFrom
mBody
mErrorMessage
mSentOK
mShowCC/mShowBCC
mSubject

Developer Guide 8-5

Chapter 8

Object/Block Property Method

CRMGraphicBlock Object Border
Description
hSpace
ImageHeight
ImageWidth
SaveAsGIF(text)
vSpace

Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4)
Animation(Mode, Value)
Brush(Mode, Value)
Chord(X1,Y1,X2,Y2,X3,Y3,X4,Y4)
Effect(Mode, Value)
Ellipse(X1,Y1,X2,Y2)
FlipHoriz()
FlipVert()
Font(Mode, Value)
FontColor(Color)
FontSize(Size)
GradientFill(StartColor, EndColor,
Direction, Colors)
GrayScale()
LoadBMP(Filename)
LoadImage(text)
LoadJPG(Filename)
LineTo(X,Y)
Monochrome()
MoveTo(X,Y)
Pen(Mode, Value)
PenColor(Color)
PenWidth(Width)
PieShape(X1,Y1,X2,Y2,X3,Y3,X4,Y4)
Rectangle(X1,Y1,X2,Y2)
Resize(Width, Height)
Rotate(Number)
RoundRect(X1,Y1,X2,Y2,X3,Y3)
SaveAsGIF(text)
SaveAsJPG(text)
TextOut(X, Y, Text,
transparent=True/False)
TextOutCenter(Left, Top, Right, Bottom,
Text, Transparent, Ellipse)

CRMChartGraphicBlock
Object

LabelX
LabelY
SQLText=Text
XLProp=text
Xprop=text
Yprop=text

BackGradient(Visible, color1, color2)
ChartTitle(text)
ManualChartEntry(Value,
MakeNull=true/false)
ShowLegend(true/false)
Stylename(Style)

CRMOrgGraphicBlock
Object

OrgTree(Mode, Value)

CRMPipelineGraphicBlock
Object

Pipe_Summary
Selected

AddPipeEntry(Name, Value, Description)
ChooseBackGround(Value)
PipelineStyle(Mode, Value)

8-6 Sage CRM

Chapter 8: ASP Object Reference

Examples
The following sample ASP pages are covered in this section:

Sample CRMGridColBlock ASP page (page 8-7)
Sample CRMListBlock ASP page (page 8-7)
Using the New Workflow Properties in an ASP page (page 8-8)

Sample CRMGridColBlock ASP page
The following example illustrates how to use the GridColBlock object to add and remove columns in a
list and to edit the properties of columns in a list. The page should be used from the Company tab
group to show all the People for the current Company.

<!-- #include file ="sagecrm.js" -->

<%// Start with the Person List

PersonList=CRM.GetBlock("persongrid");

// Add the Person fax number as the 3rd column in the list,

with no heading

GridCol=PersonList.AddGridCol("pers_faxnumber",2);

GridCol.ShowHeading=false;

// Get the GridCol Block for the FirstName column

GridCol=PersonList.GetGridCol("pers_firstname");

GridCol.AllowOrderBy=true;

GridCol.ShowHeading=true;

// Set FirstName column to jump to another asp page

GridCol.JumpEntity="custom";

GridCol.CustomActionFile="myP.asp";

GridCol.CustomIdField="pers_personId";

// Remove the Company Name column from the List

PersonList.DeleteGridCol('comp_name');

PersonList.Title="Standard Person Grid, with some changes";

CompanyId=CRM.GetContextInfo('company','comp_companyid');

CRM.AddContent(PersonList.Execute('pers_companyid='+CompanyId));

Response.Write(CRM.GetPage());

%>

Sample CRMListBlock ASP page
This example creates a case list from the company context, where the two columns status and stage
are removed if the user is not from the Sales Team. An extra column, 'FoundIn', is added if the user is
from theOperations Team.

<!-- #include file ="sagecrm.js"-->

<%// get the current Company Id

ThisCompanyId =

CRM.GetContextInfo('Company','Comp_CompanyId');

// get a reference to the CaseListBlock

CaseListBlock = CRM.GetBlock('CaseListBlock');

// build the SQL WHERE clause

SearchSql = 'Case_PrimaryCompanyId='+ThisCompanyId +

" and Case_Status='In Progress' "

// check the users team Id

UserChannel =

CRM.GetContextInfo('User','User_PrimaryChannelId');

// remove fields if not Sales team

if (UserChannel != 1) { // where 1 is Channel Id of Sales

Team

CaseListBlock.DeleteGridCol('Case_Status');

CaseListBlock.DeleteGridCol('Case_Stage');}

// add field for Development Team

Developer Guide 8-7

Chapter 8

if (UserChannel == 5) {

// where 5 is Channel Id of Operations Team

FoundIn = CaseListBlock.AddGridCol('Case_FoundVer');

FoundIn.AllowOrderBy = true;

// allow sort by Found In column

}

// execute the Block, passing in the sql clause

CRM.AddContent(CaseListBlock.Execute(SearchSql));

Response.Write(CRM.GetPage());%>

<%=EndBody%:>

Using the NewWorkflow Properties in an ASP page
The ASP page specified in the Custom File Name property, must do the following:

l Use a Container Block (container, list, or entry group).
l Set the Container Block WorkflowTable property to the table name.
l Set the Container Block ShowWorkflowButtons property to 'true'.
l Pass in the Record object as the argument to the executemethod of the container.

Example1- ShowWorkflowButtons
This file can be referred to as:

l The custom file name in the List to jump to. In this case it shows the edit screen for one record
in the table and the workflow buttons for the current record.

l The custom file name in the Primary rule. In this case the page creates a new record in the
workflow.

<!-- #include file ="sagecrm.js" -->;

<%

Response.Write(CRM.GetTabs());

ThisId=Request.QueryString("Tab_TableId");

TableDetailBox=CRM.GetBlock("MyTableEntryBox");

Holder = CRM.GetBlock('container');

Holder.AddBlock(TableDetailBox);

with (TableDetailBox) {

// turn on the delete button

DisplayButton(Button_Delete)=true;

// turn on continue button - goes back to list

DisplayButton(Button_Continue)=true;

Title = "My Table Details";}

// if the id was NOT passed in then this is NEW mode

if (!Defined(ThisId)) {

MyRecord=CRM.CreateRecord("MyTable");

if (CRM.Mode <= Edit)

CRM.Mode=Edit;}

else {

MyRecord=CRM.FindRecord("MyTable","Tab_TableId="+This

Id);

}

Holder.ShowWorkflowButtons = true;

Holder.WorkflowTable = 'MyTable';

CRM.AddContent(Holder.Execute(MyRecord));

Response.Write(CRM.GetPage());%>

8-8 Sage CRM

Chapter 8: ASP Object Reference

Example 2- WorkflowTable and ShowNewWorkflowButtons
The following sample ASP page demonstrates the new Container Block properties-WorkflowTable
and ShowNewWorkflowButtons. This page displays a list of records and buttons for any Primary
rules on the workflow for MyTable if the primary rules are configured to use a custom file.

<!-- #include file ="sagecrm.js" -->

<%

Response.Write(CRM.GetTabs());

MyList=CRM.GetBlock("MyTableList");

// to show the button on the right, put list into a

container and add button to the container

Holder = CRM.GetBlock("container");

// add the list to the container

Holder.AddBlock(MyList);

// dont show the default edit/save button on the

container

Holder.DisplayButton(Button_Default) = false;

// tell the list which records to show

MyList.ArgObj = ''; //show all records!

// Make sure the Primary rules workflow 'new' buttons

show

Holder.WorkflowTable = 'MyTable';

Holder.ShowNewWorkflowButtons = true;

// display the container

CRM.AddContent(Holder.Execute(''));

Response.Write(CRM.GetPage());%>

AddressList Object
The AddressList Object is used to customize the scripts deployed by E-mail Management. Part of the
Email Object, this object provides access to the To, CC and BCC lists of addresses. You can access
this object as follows:

myaddresslist = eMail.CC.

Please refer to theSystem Administrator Guide for more information on E-mail Management.

Methods

AddAddress(Address, Name)

Description This adds an address to the list. You generally use this function when
preparing to send a new e-mail.

Parameters Address: This is a valid e-mail address.
Name: This is the user friendly name associated with the e-mail address.

Example email.Recipients.AddAddress("test@domain.com", "test user");

Developer Guide 8-9

Chapter 8

Properties

Items

Description Returns aMail Address Object, which gives access to e-mail addresses
and names.

Parameters Integer. The index of the address.

Example emailAddress= email.Recipients.Items(1).Address;

Count

Description Returns a count of the number of e-mail addresses in the list.

Values Integer (read only)

Example if (email.Recipients.Count==1) {

 //do something

}

Attachment Object
The Attachment Object is used to customize the scripts deployed by E-mail Management. This
object provides access to an individual attachment. You use the AttachmentList Object's "items"
property to access this object: myAttachment = eMail.Attachments.Items(1);
Please refer to theSystem Administrator Guide for more information on E-mail Management.

Methods

Save(Name, Path)

Description This saves the attachment to a specified folder. The return value is Boolean. True if
the save succeeds and False if not.

Parameters Name: This is the name that the attachment is to be saved as. The parameter is
passed by reference andmay be returned with a different value than the one sent in.
Path: The full physical name of the folder where the attachment should be saved.

Example AttItem.Save("my file.txt", "D:\Program

Files\Sage\CRM\<myinstallname>\Library");

SaveAs(Name, Path)

Description This saves the attachment to the specified folder as a file with the specified name. The
return value is Boolean. True if the save succeeds and False if not.

Values Name: This is the name that the attachment is to be saved as.
Path: The full physical name of the folder where the attachment should be saved.

Example AttItem.SaveAs("my file.txt", "D:\Program

Files\Sage\CRM\<myinstallname>\Library")

8-10 Sage CRM

Chapter 8: ASP Object Reference

Properties

Name

Description This is the Name of the attachment Item. Usually this is the name of the
actual file that was attached.

Values String (read/write)

Example NewName = AttItem.Name + "test" + AttItem.Extension;

Extension

Description This is the extension of the file attachment.

Values String (read only)

Example NewName = AttItem.Name + "test" + AttItem.Extension;

AttachmentList Object
The AttachmentList Object is used to customize the scripts deployed by E-mail Management. This
object provides access to the e-mail attachments. You can access this object as follows
myAttachmentList = eMail.Attachments;
Please refer to theSystem Administrator Guide for more information on E-mail Management.

Properties

Count

Description This is a count of the number of attachments in the list.

Values Integer (read only)

Example for (i = 0; i < Attachments.Count; i++) {

//do something

}

Items

Description This returns an Attachment Object.

Values Integer. The index of the attachment.

Example for (i = 0; i < Attachments.Count; i++)

{

AttItem = Attachments.Items(i);

//do something with the attachment item

}

Developer Guide 8-11

Chapter 8

LibraryPath

Description This is the path to the CRM library. It assumes that the library exists in a
subdirectory of the CRM install directory called "library". This value can
be overwritten if required.

Values String

Example var libdir = Attachments.LibraryPath + "\\" +

CompanyQuery("comp_name");

Email Object
The Email Object is used to customize the scripts deployed by E-mail Management. It provides
access to the e-mail itself through its properties andmethods. This object is passed into the script by
default as the Email Object but can also be accessed from theMsgHandler Object as follows:
myemail = MsgHandler.msg.
Please refer to theSystem Administrator Guide for more information on E-mail Management.

Methods

Send()

Description This sends an e-mail using the contents of the Email Object.

Parameters None

Example email.Send();

AddFile(Value)

Description This adds a file attachment to the Email Object.

Parameters Value: The full physical path to the file that is to be attached. It returns
True or False depending on whether the file exists or not

Example email.AddFile('C:\Temp\report.doc')

Clear()

Description This clears the contents of the Email Object. You typically use this before
you want to send a new e-mail.

Parameters None

Example email.Clear();

8-12 Sage CRM

Chapter 8: ASP Object Reference

Header(Value)

Description Returns any named header value from the e-mail. If the header value
does not exist a blank string is returned

Parameters Value: The name of the header value that you wish to retrieve

Example comm("comm_replyto") = email.Header("Reply_To");

Properties

Body

Description This is the body text of the e-mail.

Values String (read/write)

Example comm("Comm_Email") = eMail.Body

IsHTML

Description This is used when sending an e-mail only. If set to true the e-mail is sent
as an html e-mail.

Values Boolean (read/write)

Example eMail.IsHTML = true;

Subject

Description This is the subject text of the e-mail.

Values String; (read/write)

Example comm("Comm_Note") = eMail.Subject;

Priority

Description This is the priority of the e-mail. Its values are Low (0), Normal (1), and
High (2)

Values Integer (read/write)

Example var prHigh=2;

eMail.Priority=prHigh;

Developer Guide 8-13

Chapter 8

Recipients

Description This returns an AddressList Object, which holds all of the e-mail
addresses that were in the To list on the e-mail.

Values Returns an AddressList Object.

Example var MyAddressList;

MyAddressList = email.Recipients;

//now we get the first email address from //the list

var singleaddress =

MyAddressList.Items(0).Address;

SenderName

Description This is the Name of the person who sent the e-mail.

Values String (read/write)

Example comm("comm_from") = "\""+eMail.SenderName + "\" " + "<" +

eMail.SenderAddress + "> ";

SenderAddress

Description This is the e-mail address of the person who sent the e-mail.

Values String

Example comm("comm_from") = "\""+eMail.SenderName + "\" " + "<" +

eMail.SenderAddress + "> ";

DeliveryTime

Description The DeliveryTime requires the datetime that the e-mail was delivered to
the inbox.

Values None

Example commdate = new Date(eMail.DeliveryTime);

comm("Comm_datetime") = commdate.getVarDate();

Attachments

Description This returns an AttachmentList Object, which holds a list of the
attachments on the e-mail.

Value Returns an AttachmentList Object.

Example var Attachments = email.Attachments;

8-14 Sage CRM

Chapter 8: ASP Object Reference

BCC

Description This returns an AddressList Object, which holds all of the e-mail
addresses that were in the BCC list on the e-mail.

Values Returns an AddressList Object.

Example var singleaddress = email.BCC.Items(0).Address;

CC

Description This returns an AddressList Object, which holds all of the e-mail
addresses that were in the CC list in the e-mail.

Values Returns an AddressList Object.

Example var singleaddress = email.CC.Items(0).Address;

MailAddress Object
TheMailAddress Object is used to customize the scripts deployed by E-mail Management. This
object provides access to an individual address from the AddressList Object. You can return an
individual MailAddress object as follows:

myaddress = eMail.CC.Items(1);

Properties

Name

Description This is the user friendly name associated with the e-mail address.

Values String (read/write)

Example FromName=eMail.CC.Items(1).Name;

Address

Description This is the e-mail address for this item.

Values String (read/write)

Example FromAddress=eMail.CC.Items(1).Address;

MsgHandler Object
TheMsgHandler Object is used to customize the scripts deployed by E-mail Management. It
provides basic access to the Email Object and functionality for the system. It is the top level object
within E-mail Management and scripting. It is passed into the script at run time. Please refer to the
System Administrator Guide for more information on E-mail Management.

Developer Guide 8-15

Chapter 8

Methods

Log(value)

Description If the debug option is turned on, messages are written to a log file in the
CRM install directory, for example CRM.log.

Parameters String: Logmessage.

Example MsgHandler.Debug = true;

MsgHandler.Log("testing application");

MailAdmin(Subject, Body)

Description Sends an e-mail to the e-mail address specified in the EmSe_
AdminAddress in the custom_emailaddress table.

Parameters Subject: The string value that appears in the subject of the e-mail.
Body: The string value that appears in the body of the e-mail.

Example var sSubject = "Unknown customer";

var sBody = "An unknown customer attempted to mail the service";

MsgHandler.MailAdmin(sSubject,sBody);

GetUniqueFileName(Path, FileName)

Description Takes a file and pathname and checks if the file exists in the path
already. If not, the file name is returned. If the file does exist, it returns the
next valid name for the file.

Parameters Path: This is the path where the location of the file is checked for.
Filename: This is the file name that is used to check if it is used already.

Example NewName = MsgHandler.GetUniqueFileName(libdir, AttItem.Name);

AttItem.SaveAs(NewName, libdir);

Properties

Msg

Description This returns the Email Object. Note that this should not be accessed from
the script as the object has already been passed in as the Email Object.

Values Returns the Email Object.

Example myemail=MsgHandler.msg

8-16 Sage CRM

Chapter 8: ASP Object Reference

Debug

Description Use this to flag whether messages sent via the Logmethod are actually
written to the log file.

Values Boolean (read/write)

Example MsgHandler.Debug = true;

EmailAddress

Description This is the e-mail address of the service.

Values String (read only)

Example var serviceaddress = MsgHandler.EmailAddress;

CRM Object
The CRMObject provides basic access to CRM objects and functionality. You use themethods of
this object to create new objects, get existing objects, and execute objects.
The CRMObject is the parent of the CRMBaseObject and the CRMSelfService Object. The
CRMBaseObject contains all the CRM custommetadata, and the CRMSelfService Object enables
authenticated and anonymous visitors to access varying levels of CRM data in View Only mode.

Methods

AddContent(Content)

Description The Value in the Content parameter is added to the page inmemory and is
returned when you call GetPage().

This can also be used in a CreateScript to pass something that is only available
server side, for example the current user's email address, see example 2 below.

Parameters Content: String. The value in Content should be the result of a Block.Execute()
method

Example MyList = CRM.GetBlock('PersonGrid');

CRM.AddContent(MyList.Execute

("pers_lastname like 'B%'"));

Response.Write(CRM.GetPage());

Example 2 Please refer to Developer Help files for code sample.

Developer Guide 8-17

Chapter 8

CreateQueryObj(SQL, Database)

Description Creates a new query object from the system database or an external
database connected to CRM.

Parameters SQL: A valid SQL string.
Database: The database to open. If this is left blank, the system default
database is used.

Example The following example creates a query object from the company view in
the CRM (default) database.

Query= CRM.CreateQueryObj("Select * from vcompany");

Query.SelectSql();

CRM.AddContent (Query.FieldValue("comp_name"));

while (!Query.eof)

{

CRM.AddContent (Query.FieldValue("comp_name") + '

');

Query.NextRecord();

}

Response.Write(CRM.GetPage());

CreateRecord(TableName)

Description Creates a new record object in a specified table. Youmust call the
SaveChanges method to persist the record to the database.

Note that SaveChanges is automatically called by the Executemethod of
most blocks when themode is set to Save.

Parameters TableName: The table that this record is created in. This table can be
either a CRM table or one that has been added by creating an external
table connection within CRM.

Example The following example displays a record summary for the current person.

Note that GetContextInfo is amethod of the CRMBase object.

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');

ThisPersonRecord =

CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);

PersonBlock = CRM.GetBlock('PersonBoxLong');

CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));

Response.Write(CRM.GetPage());

8-18 Sage CRM

Chapter 8: ASP Object Reference

FindRecord(TableName, QueryString)

Description Finds an existing row on the given table and returns a record object.

Parameters TableName: The table that this record is extracted from. This table can be
a CRM table or an external table that has been added by creating an
external table connection within CRM.
QueryString: The SQLWHERE clause that identifies the record you are
interested in.

Example The following example displays a record summary for the current person.

Note that GetContextInfo is amethod of the CRMBase object.

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');

ThisPersonRecord =

CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);

PersonBlock = CRM.GetBlock('PersonBoxLong');

CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));

Response.Write(CRM.GetPage());

GetBlock(BlockName)

Description Returns a CRM block. You use this method to call child blocks of the
CRMObject. This is one of themost commonly usedmethods in CRM
ASP generation. You retrieve a block, customize it, and display it.

Parameters BlockName: Any valid block type, or any existing screen or list in CRM.
For more information on block naming refer to Creating a New Block
(page 4-18).

Example The following example creates amarquee block:

Marquee = CRM.GetBlock("marquee");
The following example gets a container block, a search block, and a list
block. It then adds the search screen and list block to the container and
displays the container.

Note that you can also set the execute statement to use the search
results as the argument for the list.

Search=CRM.GetBlock("CompanySearchBox");

List=CRM.GetBlock("CompanyGrid");

Holder = CRM.GetBlock("Container");

Holder.AddBlock(Search);

Holder.AddBlock(List);

CRM.Addcontent(Holder.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-19

Chapter 8

GetCustomEntityTopFrame(EntityName)

Description Adds the top content for a custom entity including the icon, caption, and
description.

Parameters String: EntityName.

Example CRM.GetCustomEntityTopFrame("EntityName");

GetPage()

Description Returns the contents of the page, that has been previously added by
AddContent. The contents are in the syntax used by the current device.
As GetPage() includes the GetTabs() method, TabGroupName can be
passed into this method. If you pass it in, it will show those tabs instead
of the current default tabs.

Parameters TabGroupName(optional, see above).

Example MyList = CRM.GetBlock('PersonGrid');

CRM.AddContent(MyList.Execute("Pers_lastname like 'B%'"));

Response.Write(CRM.GetPage());

GetTrans(Family, Caption)

Description Returns the translation for a given caption in the given caption family
based on the user's current language. For self service users, you need to
preset the language using the VisitorInfo method for this to work.
CRM.VisitorInfo("Visi_Language")='DE';

Parameters Family: The name of the family of captions to which the caption relates.
You can view all the caption types and family names in Administration |
Customization | Translations.
Caption: The caption name.

Example The following example displays hello in German, when the user's current
language is set to German, assuming the translation has already been
entered in CRM translations.

CRM.AddContent(

CRM.GetTrans('GenCaptions','Hello'));

Response.Write(CRM.GetPage());

8-20 Sage CRM

Chapter 8: ASP Object Reference

RefreshMetaData(Family)

Description If data in the Custom_Captions table is explicitly edited or new records
are added, you use this method to refresh CRM's internal cache with the
new information.

Parameters Family: The translation family (Capt_Family) to update.

Example The following example adds a new selection entry called 'Open' to the
custom caption's comp_status selection.

You use the CreateRecordmethod to create a record in the Custom_
Captions table. You add entries to relevant fields in that table, save the
changes to the database and then use the RefreshMetaDatamethod to
refresh the cache.

NewCaption=CRM.CreateRecord("Custom_Captions");

NewCaption.Capt_FamilyType="Choices";

NewCaption.Capt_Family="Comp_Status";

NewCaption.Capt_Code="Open";

NewCaption.Capt_US="Open";

NewCaption.SaveChanges();

CRM.RefreshMetaData("Comp_Status");

SetContext(EntityName, EntityID)

Description Updates the recent list for the specified entity

Parameters EntityName: The name of the custom entity.
EntityId: The custom entity id as it appears in custom_tables.

Example CRM.SetContext(EntityName,Id);

Developer Guide 8-21

Chapter 8

Properties

Mode

Description Determines how some of the blocks display. Be careful when toggling
modes. If the conditionals are not very precise, you can end up locking
down a screen.

Values 0=View, 1=Edit, 2=Save

Example Example 1: The following example changes the CRMmode to Edit if it is
in View mode.

if (CRM.Mode < Edit) {CRM.Mode=Edit; }

Example 2: The following example changes the CRMmode to Save if
there is an error, and displays the error.

CRM.Mode=Edit;

if (error!="")

{

CRM.Mode=Save;

CRM.AddContent(error);

Response.Write(CRM.GetPage());

}

CRMBase Object
The CRMBase object provides functionality that is only applicable in the CRM environment, such as
the company currently being viewed. This object is often used to set up the context information for the
current view and display the tabs for that view.

8-22 Sage CRM

Chapter 8: ASP Object Reference

Methods

Button

Description Returns the text, image, and link for a CRM button. These buttons are
typically the generic buttons that appear on screens and containers. This
is useful for adding buttons to screens to link to otherWeb sites or ASP
pages.

Parameters Caption: The caption for the button. This is translated based on the user's
language (providing there is amatching entry in CRM Translations).
ImageName: The image you want displayed on the button. All images
need to be stored in the CRM directory 'Img' folder.

URL: The URL that this button links to. This can either be a link to aWeb
address or to a custom page in the CRM custom pages folder. (See URL
below).

PermissionsEntity and PermissionsType: If you want the button to be
added based on a users security profile for an entity, use the
PermissionsEntity and PermissionsType parameters. PermissionsEntity
is the name of the entity. PermissionsType is either VIEW, EDIT,
DELETE or INSERT, depending on the action of the button.

Target: This allows the TARGET property of the button's anchor () tag to
be set.

Example The following example displays a button called 'test' that includes an
image called 'test.gif' and links to an ASP page (test.asp).

CRM.AddContent(CRM.Button("test",

"test.gif", CRM.Url("test.asp")));

Response.Write(CRM.GetPage());

Developer Guide 8-23

Chapter 8

GetContextInfo(Context, FieldName)

Description Returns the named field from the given table based on the current
context. You can also use this method to return the RecordID for a given
table which you can use to build an SQL query (for example to create
charts).

Parameters Context: The context from which you want to extract the field. Options
are:

l Person, Company, Opportunity, Lead, Case, Solution
l Channels (teams)
l Campaigns, Waves, Wave Items
l SelectedUser (SelectedUser is applicable when viewing theMy

CRM list)
l User (User is the currently logged on user.)

FieldName: The name of the required field in the defined context.

Example If the user is currently viewing a case this returns the case description:

GetContextInfo("case", "case_description");

In the following example, the cases 'In Progress' for the current company
context are displayed.

ThisCompanyId = CRM.GetContextInfo('Company','Comp_CompanyId');

CaseListBlock = CRM.GetBlock('CaseList');

SearchSql = 'Case_PrimaryCompanyId='+ThisCompanyId + " and

Case_Status='In Progress' ";

CRM.AddContent(CaseListBlock.Execute(SearchSql));

Response.Write(CRM.GetPage());

8-24 Sage CRM

Chapter 8: ASP Object Reference

GetTabs(TabGroup)

Description Use this method if you are using an old include file (for example the
CRM.js file). You don't need to GetTabs if you use the
SAGECRM.JS/ACCPACCRM.JS include file.
Obtains the tabular information for the current context/view. You include
this method in the first few lines of your ASP file (after the CRM.JS
include file).TheGetTabs method gets the current set of tabs which helps
maintain the look of CRMwithin the ASP pages.

You also use this method to set a new tab group to be displayed from a
menu option. In this case, you include the new tab group name in the
parentheses of the GetTabmethod.

Parameters TabGroup: Name of tabgroup that you want to display.

Example To display a new tab group that you have created, you can add a new
menu button that links to an ASP that include the GetTabs method as
follows:

<%= CRM.GetTabs("NewTabGroupName") %>

Add the following code to the top of your ASP page to display the tabs for
the entity currently being viewed. If a company is viewed the company
tabs are shown.

<%= CRM.GetTabs() %>

or

<% Response.Write(CRM.GetTabs()) %>

Developer Guide 8-25

Chapter 8

Logon(LogonId, Password)

Description Enables you to access andmanipulate your CRM data externally from a
command prompt. It enables you to utilize CRM as a COM object. This
method initializes the CRM object, returns a blank string if successful,
and otherwise it returns an error code.
Note that for this function to work correctly, youmust set the External
Logon Allowed option to True, in Administration | Users | Users for the
relevant user.

This should not be used in ASP or .NET . When this method is used no
metadata is available, this technique is for datamanipulation only.

Parameters LogonId: This is the user name as specified in the CRM Logon screen.
Password: This is the user's CRM specific password.

Example To start using the CRM object as a specified external user you use the
following code in an external JavaScript page:

var CRM= new ActiveXObject('CRM.<crminstalldir>');

CRM.Logon("Administration", "password");

Note that you can also pass in your encrypted password by copying and
pasting it from the system database. Ideally you need to create a specific
logon for external use of the system with limited access rights using an
encrypted password for extra security.

Url(Action)

Description Every URL in CRM needs to be specially formatted. You use this method to
transform an unformatted URL to the required format. You then use the returned
URLwhenever you create a link in CRM.

Parameters Action: Can be a URL, an ASP page or a .NET assembly reference. If it is an ASP
file, custompages is prepended and the CRM context information is appended. You
can also pass in an action string. Anything else returns the action untouched.

Example Example 1: The following example displays a button that links to an ASP page.

CRM.Ad-

dContent(CRM.Button("Chart","Cancel.gif",CRM.Url("system/InvChart.asp")));

Response.Write(CRM.GetPage());

Example 2: The following example creates an anchor that links to the CRMWeb
site.

<A HREF='*<%=CRM.Url("http://www.mydomain.com")%>'>Click here to view the Web

site

Example 3: The following example creates a link that will reference the
"RunQuickLook" basemethod of a .NET Dll called "QuickLook.dll" :

myContainer.AddButton(CRM.Button(“Add”,”new.gif”,CRM.Url(“QuickLook.dll-

RunQuickLook”)));

8-26 Sage CRM

Chapter 8: ASP Object Reference

ConvertValue(Avalue, AfromCurr, AToCurr)

Description Enables the user to convert a value from one currency to another.

Parameters AValue : The value to be converted.AFromCurr : The identifier of the
currency to convert from.
AToCurr : The identifier of the currency to convert to.

Returns a string containing the converted value, formatted to the number
of decimals of the AToCurr. The AFromCurr and AToCurr must exist in
the Curr_CurrencyID field of the Currency table. If either AFromCurr or
AToCurr are not a valid currency, the result returns an error message.

Example The following example converts the value 50,000 from Euro to Sterling.

var iValue;

var iFromCurr;

var iToCurr;

iValue = 50,000;

iFromCurr = 1; // Assuming this is the euro currency id

iToCurr = 2; // Assuming this is the Sterling currency id

CRM.AddContent("The value in Sterling is " +

CRM.ConvertValue(iValue, iFromCurr, iToCurr));

Response.Write(CRM.GetPage());

Properties

FastLogon

Description Prevents CRM from loading themetadata cache when a user logs on
externally. Use with the Logonmethod.

This should not be used in ASP or .NET . When this method is used no
metadata is available, this technique is for datamanipulation only.

Values 1=off, 2=low, 3=high. It is off by default.

Example var CRM= new ActiveXObject('CRM.<CRMinstalldir>');

CRM.FastLogon=1;

CRM.Logon("Administration", "password");

TargetLists

Description When referenced returns a TargetLists Object.

Value Read only. Returns a TargetLists Object.

Example See the CRMTargetLists Object (page 8-99) section for an example.

CRMBlock Object
The CRMBlock object is the base for all CRM blocks. The specific block type called by the CRM
Object determines the actual implementation of each of the CRMBlock methods and properties.
Preceding code:

Developer Guide 8-27

Chapter 8

block=CRM.GetBlock("myblock");

Methods

Execute(Arg)

Description Performs the block action and returns the display contents of the block.
The argument is optional and determined by the block type. It is
necessary to use this method to execute any block.

Parameters Arg:(Optional). Any value that relates to the block type.

Example block.Execute();

The following example executes the personlist block.

list=CRM.GetBlock("personlist");

CRM.AddContent(list.execute());

Response.Write(CRM.GetPage());

Validate()

Description Performs basic checking on data entries. For example Checks to see if a required
field is blank. Normally used in 'if' statements.

Parameters None

Example block.Validate();

The following example displays an error message if all relevant fields are not
validated.

if ((CRM.Mode==Save) && (!block.Validate()))

{error="Please correct the highlighted

entries";

CRM.Mode=Edit;}

8-28 Sage CRM

Chapter 8: ASP Object Reference

Properties

ArgObj

Description If the block is in a container, this property is an alternative way to pass
parameters to the block.

Parameters None

Example block.ArgObj=record;

The following examples passes the Search block result as the argument
to the list block and displays the relevant search or results list.

SearchContainer = CRM.GetBlock('Container');

SearchBlock = CRM.GetBlock('PersonSearchBox');

SearchContainer.AddBlock(SearchBlock);

if (CRM.Mode == 2) {

resultsBlock = CRM.GetBlock('PersonGrid');

resultsBlock.ArgObj = SearchBlock;

SearchContainer.AddBlock(resultsBlock);}

CRM.AddContent(SearchContainer.Execute());

Response.Write(CRM.GetPage)

CheckLocks

Description Specifies whether the system checks if a record is in use before allowing
it to be edited. Only applicable on blocks that may be used to edit records,
that is, EntryGroup or Container Blocks. By default this is True. If the
record is in use it displays an error message. You only use this property
when you want to set it to false. Note that falsemust be lowercase.

Values Boolean: true, false.

Parameters None

Example Block=CRM.GetBlock("companyboxlong");

Block.CheckLocks=false;

DisplayForm

Description Specifies if the block wraps itself in a form element.

Parameters Boolean: True, false. Default is true.

Example The following example wraps the companyboxlong block in a form
element, whichmeans it follows the normal Save/Change steps (such as
performing validation tasks). If you set this to false the data is not saved
in the form.

block=CRM.Getblock("companyboxlong");

block.DisplayForm=true;

CRM.AddContent(block.execute());

Response.Write(CRM.GetPage());

Developer Guide 8-29

Chapter 8

FormAction

Description If the DisplayForm property is set to 'true', you can set the action the form
takes using this property. By default the form action is blank, which
causes a submit to return to the same page.

Parameters None

Example block.FormAction="mypage.asp";

Height

Description Sets the block position in pixels or as a percentage of the screen. The
value you place in this property determines how far the block appears
from the top of the screen.

Parameters None

Example block.Height=400;

block.Height=40%

The following example sets the block to be 150 pixels from the top of the
screen.

Block=CRM.GetBlock("companyboxlong");

Block.Height="150";

CRM.AddContent(Block.Execute());

Response.Write(CRM.GetPage());

Name

Description Sets or gets the name of the current block. Used to retrieve the name of
the current block.
Note that setting the Name property only changes the name of this
instance of the block.

Values Name: String, the name of the block.

Example The following example sets the block and returns the block name:

Block=CRM.GetBlock("entry");

Block.Name="My New Block";

CRM.AddContent(Block.Name);

Response.Write(CRM.GetPage());

8-30 Sage CRM

Chapter 8: ASP Object Reference

NewLine

Description If the block is an Entry or EntryGroup in a container, this property
determines whether the block appears on a new line.

Note this is the same as setting the field NewLine property from
Administration | Customization | <entity> | Blocks.

Values Boolean: True, false. Default is true.

Example The following example inserts two Entry blocks into a container side-by-
side.

Group=CRM.Getblock("container");

block=CRM.GetBlock("companyboxlong");

Group.AddBlock(block);

block2=CRM.GetBlock("personboxshort");

block2.NewLine=false;

Group.AddBlock(block2);

CRM.AddContent(Group.Execute());

Response.Write(CRM.GetPage());

ShowValidationErrors

Description You use this method to enable validation errors to display when a user
incorrectly enters information in an entry box. If an entry is invalid, an
ErrorString is displayed.

Values Boolean: True, false. By default this property is set to true.

Parameters None

Example MyBlock=CRM.GetBlock("entrygroup");

MyBlock.ShowValidationErrors=false;

Title

Description Used to set the block title. Note that this is the same as setting the block
Title property from Administration | Customization | <entity> | Blocks.

Parameters None

Example The following example sets the company summary box title.

block=CRM.Getblock("companyboxlong");

block.Title="Test Block";

CRM.AddContent(block.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-31

Chapter 8

ViewName

Description You use this property with List blocks when you want to define what view
the list is based on. You only use this property with a List block that you
are creating dynamically.

Values String: Name of view.

Example The following example creates a new list based on the
vListCommunication view.

NewList=CRM.GetBlock("PersonList");

NewList.ViewName="vListCommunication";

NewList.AddGridCol("Pers_FullName");

CRM.AddContent(NewList.Execute(""));

Response.Write(CRM.GetPage());

Width

Description Sets the block width in pixels or as a percentage of screen

Parameters None

Example block.Width=400;

block.Width="50%";

The following example sets the width of the company summary box to
40%.

Block=CRM.GetBlock("companyboxlong");

Block.Width="40%";

CRM.AddContent(Block.Execute());

Response.Write(CRM.GetPage());

8-32 Sage CRM

Chapter 8: ASP Object Reference

Mode

Description Describes what state the ASP page is in and controls what happens to
certain blocks when they are executed.

Values Mode holds an integer value.
0 - View
1 - Edit
2 - Save
3 - PreDelete
4 - PostDelete

Note that constants are declared for these values in the CRM include
files.

Example The following example changes the default mode of an EntryGroup block
from 0 (View) to 1 (Edit). In this example the case entry block is set to
display in edit mode.

Record = CRM.CreateRecord("Case");

EntryGroup = CRM.GetBlock("CaseDetailBox");

if (CRM.Mode == 0){

CRM.Mode = 1;

}

CRM.AddContent(EntryGroup.Execute(Record));

Response.Write(CRM.GetPage());

CRMChartGraphicBlock Object
This block inherits all the capabilities of the GraphicBlock and adds to it the ability to generate a
variety of different charts. These charts may depend on data retrieved via SQL or added through ASP
for their values. In this way, they can be fully dynamic and represent data at a specific moment in
time.
To initiate this block:

ChartGraph=CRM.GetBlock('chart');

You use the ChartGraphicBlock to draw different styles of chart and graph. The author of this ASP
page controls the type of chart and all of the associated parameters. In addition, the ASP author
chooses what database query to use for any chart or graph.

Methods

BackGradient(Visible, color1, color2)

Description Applies a gradient to the background of a chart.

Parameters Visible : True, false.
color1 and color 2: Text WideString

Example To have a blue gradient fading to white use:

ChartGraph.BackGradient(true,'Blue','White');

Developer Guide 8-33

Chapter 8

ChartTitle(text)

Description Adds a title to the chart. If text is blank then the title is removed allowing
more room for the chart.

Parameters Text : WideString, Default is Blank

Example ChartGraph.ChartTitle('Case Priority');

ManualChartEntry(Value, MakeNull=true/false)

Description Creates a chart where the data is not contained in a CRM table. It
enables data to be hardcoded into a chart without relying on it being in a
table. The parameters passed vary depending on the style of table in use
(for example bar). TheMakeNull parameter determines if this entry should
be blank and is normally set to false.

Parameters Value : WideString, MakeNull : True, false.

Example ChartGraph.ManualChartEntry('10,Jan',false);

ChartGraph.ManualChartEntry('10,Feb',false);

ChartGraph.ManualChartEntry('+5,Feb',false);

ChartGraph.ManualChartEntry('20,Mar',false);

ChartGraph.ManualChartEntry('30,Apr',false);

ChartGraph.ManualChartEntry('-5,Apr',false);

ShowLegend(true/false)

Description Determines whether to show the legend for the chart.

Parameters Boolean: True, false. Default is true.

Example ChartGraph.ShowLegend(true);

Stylename(Style)

Description Sets the style of the chart.

Values 'Bar': Standard bar chart
'Hbar': Horizontal bar chart
'Line': Line graph
'Stairs': Line graph in the form of stairs
'Pie': Pie chart
'FastLine': More basic line graph
'Area': Filled form of Line graph
'Point': Rectangular points are used
'Arrows': Values are shownwith arrows
'Bubbles': Values are shownwith bubbles
Parameters Style: Text, default is 'Bar'.

Example ChartGraph.Style('Pie');

8-34 Sage CRM

Chapter 8: ASP Object Reference

Properties

LabelX

Description This is the label given to the horizontal axis of a chart.

Values Text : WideString

Example ChartGraph.LabelX='Date';

LabelY

Description This is the label given to the vertical axis of a chart.

Values Text : WideString

Example ChartGraph.LabelY='Certainty%';

SQLText=Text

Description Initializes a database using the specified SQL. The first fields in the
specified database are used for the chart if X,Y, or XL labels have not
been set. CRM navigates through the fields in the table as defined by
SQLText and uses the first fields it finds and is able to use.

Values Text = Widestring

Example Chart=CRM.GetBlock('chart'):

Chart.SQLText='Select * from OpportunityProgress Where '+

'Oppo_OpportunityId='+OppId;

CRMChartGraphicBlock Object

XLProp=text

Description Contains the field name, where the field data is text, which is used to
display labels along the X-axis in place of values.

Values Text: Widestring

Example ChartGraph.XLProp='Fld_Date';

Xprop=text

Description Contains the name of the field name that is used along the X-axis.

Values Text: Widestring

Example ChartGraph.Xprop='Fld_Date';

Developer Guide 8-35

Chapter 8

Yprop=text

Description Contains the name of the field name that is used along the Y-axis.

Values Text: Widestring

Example ChartGraph.Yprop='Fld_Salary';

CRMContainerBlock Object
The CRMContainerBlock is used to group other blocks on a screen. Container blocks can also be
nested inside other containers. An example of a Container block is a linked search panel and related
list. This block contains the standard Sage CRM buttons: Change/Save, Delete, and Continue. Note
that you can also configureWorkflow buttons if they need to bemade available on that screen. If any
blocks that have buttons are included, the buttons are shown only once on the container block and
then applied to all the internal blocks. A Container Block may have up to three fixed functionality
buttons and any number of extra buttons. The three fixed buttons are:

l StandardChange/Save button. This button is displayed as 'Change' when the screen is in
View mode and clicking it changes it to Edit mode. The button is displayed as 'Save' while in
Edit mode and clicking it saves the changes andmoves it to View mode. By default this button
is always shown.

l Delete button. This button is displayed as 'Delete' when the screen is in View mode and
clicking it moves to Confirm Deletemode. The buttons shows as 'Confirm Delete' and clicking
it deletes the record andmoves back to View mode. By default this button is not shown.

l Continue button. This button is displayed as 'Continue' when the screen is in View mode or
'Cancel' when the screen is in Edit or Confirm Deletemode. By default this button is not
shown.

The CRMContainerBlock can be used as a wrapper for other blocks if you want to put more than one
block on the screen at a time.
The Execute function on a block takes only one argument. When the Container Block is executed it
passes its argument onto all its items as they are executed in turn. If it is required for item blocks in a
Container Block to have different arguments for their Execute functions, their arguments can be set
individually by setting the ArgObj property on each item block and not passing in any argument to the
Container.
The following is the generic code for creating a container with two blocks:

//Create a container

Container = CRM.GetBlock("container");

// get two screens

Screen1 = CRM.GetBlock("Screen1");

Screen2 = CRM.GetBlock("Screen2");

// add them to the container block

Container.AddBlock(Screen1);

Container.AddBlock(Screen2);

// display the container block, which displays the

// two blocks it contains

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

8-36 Sage CRM

Chapter 8: ASP Object Reference

Methods

AddBlock(Block)

Description Enables blocks to be added to a container.

Parameters Block: This can be a reference to any block previously created with the
GetBlock call.

Example The following example creates a container block and adds two blocks to
it.

MyContainer = CRM.GetBlock("container");

MyPerson = CRM.GetBlock("personboxlong");

MyCompany = CRM.GetBlock("companyboxlong");

MyContainer.AddBlock(MyPerson);

MyContainer.AddBlock(MyCompany);

CRM.AddContent(MyContainer.Execute());

Response.Write(CRM.GetPage());

AddButton(ButtonString)

Description This method adds an extra button to the Container block. The button
string should be HTML to render the desired button. This HTML is added
after the other buttons are drawn.
Note that the easiest way to get the HTML for the button is by using the
CRM.Buttonmethod, see below.

Parameters ButtonString: String, the HTML to render the button. Ideally this should be
a link within a <TABLE> tag in the ASP page.

Example The following example adds a button called 'Try This' to the company
summary block.

R = CRM.FindRecord('Company','Comp_CompanyId=1');

Holder = CRM.GetBlock('companyboxlong');

Holder.AddButton(CRM.Button("TryThis","new.gif",CRM.Url("Anot

herPage.asp")));

CRM.AddContent(Holder.Execute(R));

Response.Write(CRM.GetPage());

Developer Guide 8-37

Chapter 8

DeleteBlock(BlockName)

Description Removes the given block from the container.

Parameters BlockName: String, the name of the block to be deleted.

Example In this example, CompanySummaryBlock is a Container
block that has been set up within Administration |
Customization | Company | Blocks. One of the blocks in
it is the AddressBoxShort entry group. This example
removes that block for non administration users.

MyC = CRM.GetBlock("CompanySummaryBlock");

userLevel=CRM.GetContextInfo("User","User_Per_

Admin");

if (userLevel > 1)

{MyC.DeleteBlock("AddressBoxShort");}

CRM.AddContent(MyC.Execute());

Response.Write(CRM.GetPage());

GetBlock(BlockName)

Description The Container block GetBlock function differs from the Base block
GetBlock function in that it returns blocks from within the container. This
narrows the search. TheGetBlock function returns a pointer to the block
object referred to by BlockName if that block exists as one of the blocks
within the container.

Parameters BlockName: String, the name of the block to return

Example In this example, MyCustomContainer is a Container block that has been
set up within the Blocks section of Administration | Customization |
Company | Blocks. This block contains three screens. One of the blocks
in this Container is the CompanyBoxShort. This example displays that
screen only.

MyCustomContainer= CRM.GetBlock("MyCustomContainer");

R = CRM.FindRecord('Company','Comp_CompanyId=30');

MyE=MyCustomContainer.GetBlock("CompanyBoxShort");

CRM.AddContent(MyE.Execute(R));

Response.Write(CRM.GetPage());

8-38 Sage CRM

Chapter 8: ASP Object Reference

Properties

ButtonAlignment

Description This property works with the ButtonLocation property to enable the
position of the button(s) on the screen to be fine-tuned.

Values ButtonAlignment is a numeric value. Button definitions are declared as
constants in the CRM include file as follows: Bottom = 0, Left = 1, Right =
2, Top = 3.
If ButtonLocation is Top or Bottom, ButtonAlignment may be set to Left,
Center, or Right-default is Left if not set.

If ButtonLocation is Left or Right then ButtonAlignment may be set to
Top, Center, or Bottom-default is Top if not set.

Example In the following example, the buttons are aligned to the left of the screen.

Container = CRM.GetBlock("container");

Container.ButtonLocation = Top;

Container.ButtonAlignment = 1;

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

ButtonImage

Description This property enables you to change the image of the standard
Change/Save button from the default image.
The image file should be located in the ..img\buttons\.. folder of the CRM
root directory. If you wish to store the image elsewhere youmust specify
the full path in the property.

Parameters None

Example The following example sets the image and text to be displayed on the
CRM default button.

Container=CRM.GetBlock("container");

Container.DisplayButton(Button_Default)=true;

Container.ButtonTitle="My Button Title";

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-39

Chapter 8

ButtonLocation

Description This property enables you to set the location of the buttons. There are four
options:
0 = Bottom (Bottom)
1 = Left (Left)
2 = Right (Right)
3 = Top (Top)
If the location is Top or Bottom, the buttons are shown in a horizontal line,
otherwise they are shown in a vertical line. Note that these options are
declared as constants in the CRM include files.

Parameters None: By default the buttons are displayed on the right of the Container.

Example In the following example, the buttons are displayed at the top of the
container.

Container=CRM.GetBlock('container');

Container.DisplayButton(Button_Delete)= true;

Container.DisplayButton(Button_Continue)=true;

Container.DisplayButton(Button_Default)=true;

Container.ButtonTitle="My Button Title";

Container.ButtonLocation=Top

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

ButtonTitle

Description This property allows the text shown on the Standard Change/Save
(Button_Default) button to be overridden.

Parameters None

Example The following example sets the title on the default CRM button.

Container=CRM.GetBlock("container");

Container.DisplayButton(Button_Default)=true;

Container.ButtonTitle="My Button Title";

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

8-40 Sage CRM

Chapter 8: ASP Object Reference

DisplayButton

Description This property is used to turn the three fixed buttons on or off as desired.
The standard Change/Save button is the default button.

Parameters The parameter specifies which button to turn on/off. The available options
are:
1 = Standard Change/Save button (Button_Default)
2 = Delete Button (Button_Delete)
4 = Continue Button (Button_Continue)
Note that the standard Save/Change buttons are declared as constants in
the CRM include files.

Example The following example creates a container block including all the buttons.

Container=CRM.GetBlock("container");

Container.DisplayButton(Button_Delete) = true;

Container.DisplayButton(Button_Continue)=true;

Container.DisplayButton(Button_Default)=true;

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

Workflow Properties

TheWorkflow Container Block properties enable you to include the same kinds of buttons in an ASP
page for any table in the system database, including new custom tables that have been added for a
customer. The Container block has three properties that enableWorkflow functionality:

l WorkflowTable
l ShowWorkflowButtons
l ShowNewWorkflowButtons

You can use these properties on tables that you have configured workflow rules and states for, where
you want to display these rules and states as workflow buttons. For example, if you have workflow
enabled on the Cases table in CRM, a 'New' button is displayed for every Primary workflow rule in the
Cases List. When you edit a Case, you see the workflow buttons applicable to that case displayed.

Pre-conditions

In order to use theWorkflow properties on a new custom CRM table, the table connectionmust have
the usual CRM required fields, xxx_createdby, xxx_createddate, xxx_updatedby, xxx_updateddate,
xxx_timestamp and xxx_deleted (where xxx is the prefix on all the fields in that table). The following
conditions also apply:

l Theremust be a numeric field on the table to hold the workflow Id (this is typically called xxxx_
workflowid)

l When creating the table link, there is a field called 'WorkflowId Field' in the Table Details
screen. You fill in the name of your workflow Id field here. For more information refer to
Database Customization (page 5-1).

l The workflow rules/states/treemust be configured for the table in Administration | Advanced
Customization |Workflow. For more information onWorkflow administration please refer to
the System Administrator Guide.

The Primary rules for a workflow on a new internal table must:

l Use the Custom File Name property. Typically this points to the edit.asp file page that
displays the entry group.

Developer Guide 8-41

Chapter 8

l Have at least one field action, for example all Primary rules.
l The field actions must not include any fields that are already shown by the ASP page.

ShowNewWorkflowButtons

Description You use this property on a screen showing a list of the records in a table
when you want to show the 'New' button that creates a record in a
workflow, that is, for all the Primary rules.
Note that youmust also use theWorkflowtable property to set the table
name.

Values Boolean: True, false.

Example The following example sets the workflow buttons to display in the table.

List = CRM.GetBlock('MyTableList');

List.WorkflowTable = 'MyTable';

List.ShowNewWorkflowButtons = true;

CRM.AddContent(List.Execute(''));

Response.Write(CRM.GetPage());

ShowWorkflowButtons

Description You use this property to display theWorkflow buttons on a view or edit
screen for one record.
Note that for ShowWorkflowButtons to take effect, youmust pass in the
Record block as the argument to the containers Execute function. It does
not work if the Record object is just set in the ArgObj property.

Values Boolean value: True, false.

Example The following example displays the workflow buttons on the EntryGroup.

Record = CRM.FindRecord('MyTable','Table_Id=99');

EntryGroup = CRM.GetBlock('MyTableBlock');

EntryGroup.ShowWorkflowButtons = true;

CRM.AddContent(EntryGroup.Execute(Record));

Response.Write(CRM.GetPage());

WorkflowTable

Description This property sets the name of the table which the
'ShowNewWorkflowButtons' is to use.

Parameters Tablename: The name of the table.

Example The following example forces the ShowNewWorkflowButtons property to
use the Company table.

Container=CRM.GetBlock('container');

Container.WorkflowTable='company';

8-42 Sage CRM

Chapter 8: ASP Object Reference

CRMContentBlock Object
The ContentBlock Object is a simple block that takes a string of content(text) and displays it on the
page. This block is normally used in conjunction with other blocks on a screen.
The block has only one property "contents", which displays itself on the page. Any content must be
formatted using HTML, to appear formatted on-screen.
The following is the generic code for creating a content block:

//Create a content block

Content= CRM.GetBlock("content");

Content.contents = "This is the contents";

CRM.AddContent(Container.Execute());

Response.Write(CRM.GetPage());

Properties

Contents

Description Enter text in content block. You use HTML formatting to format the text.

Values Text:Widestring

Example This is an example of using a content block as a header for information on-
screen

test=CRM.GETBlock('content');

test.contents = '<TABLE> <TD CLASS=TABLEHEAD>Testing

Details</TD></Table>';

CRM.AddContent(test.Execute());

Response.Write(CRM.GetPage());

CRMEntryBlock Object
The CRMEntryBlock object corresponds to a single field that is to be displayed or edited on-screen.
You can createmany different entry types, such as text blocks, multiselect boxes and currency input
boxes. You typically add Entry blocks to EntryGroups or Containers. You can use JavaScript scripts
on these blocks to perform tasks when they load, change and are validated.
The CRMEntryBlock is a child of the CRM block. You usually add entries to an entrygroup or a
container block but the EntryBlock does not inherit the properties or methods of the block it is added
to.
The properties that apply to the CRMEntryBlock object are similar to the field properties available
when adding entries to a screen within Administration | Customization. Preceding Code:

EntryGroup=CRM.GetBlock("GroupBlockName")

EntryGroup.AddEntry("entryname")

Entry= EntryGroup.GetEntry("entryname")

Developer Guide 8-43

Chapter 8

Methods

RemoveLookup

Description You can set this property on Entry blocks that have entry type = 21
(Selection) to remove certain options from the lists.

Parameters String : The code for the item to be removed.

Example The following example removes the list item 'Customer' from the Type list
on the Company Entry Screen.

r=CRM.FindRecord('Company','Comp_companyid=30');

CompanyBlock=CRM.GetBlock('companyboxlong');

NewE=CompanyBlock.GetEntry('comp_type');

NewE.RemoveLookup("customer");

CRM.AddContent(CompanyBlock.Execute(r));

Response.Write(CRM.GetPage());

Properties

AllowBlank

Description This property can be set on any Entry block that is of entry type 21
(Selection). If the AllowBlank property is set to true, a blank option is
added to the list to enable the field to be set to blank. If this is set to false,
there is no blank option, thus forcing a value to be selected for the field.
This is set to true by default, so you only set this property when you want
to disable blank entries.

Values Boolean : True, false.

Example This example requires the user to select an option from the company
revenue field, by setting the AllowBlank property to false.

r = CRM.FindRecord('Company','Comp_companyid=44');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_revenue');

NewE.AllowBlank = false;

CRM.AddContent(EG.Execute(r));

Response.Write(CRM.GetPage());

8-44 Sage CRM

Chapter 8: ASP Object Reference

Caption

Description Enables you to change the caption on an Entry. You use this property only
if the caption is required to be different on this particular screen only. If the
caption is to be permanently changed, it should be done in Administration
| Customization | <entity> | Fields. The change is automatically reflected
throughout the system.

Values Value: String, new caption code. The translation for the caption on the
entry is looked up using the Captions Family and this code.

Example The following example creates a new caption called New Caption for the
comp_revenue field in the company table.

r = CRM.FindRecord('Company','Comp_companyid=30');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_revenue');

NewE.Caption = 'New Caption';

CRM.AddContent(EG.Execute(r));

Response.Write(CRM.GetPage());

CaptionPos

Description Enables you to re-position the captions on fields to reflect the value in the
field. This is usually used with the Javascript Enumerator object.

Values Numeric, may be one of the following:
1. Puts the caption on top of the values.
2. Puts the caption to the left of the values.
3. Puts the caption to the left of the values, captions left aligned and
values left aligned.
6. Puts the caption to the left of the values, captions right aligned, values
left aligned.

Example The following example sets the caption on the company entry field to the
left of the values, captions right aligned, values left aligned.

r = CRM.FindRecord('Company','Comp_companyid=30');

CompBlock = CRM.GetBlock('CompanyBoxLong');

eEntries = new Enumerator(CompBlock);

while (!eEntries.atEnd()) {

y = eEntries.item();

y.CaptionPos = 6;

eEntries.moveNext();}

CRM.AddContent(CompBlock.Execute(r));

Response.Write(CRM.GetPage());

Developer Guide 8-45

Chapter 8

CreateScript

Description Enables you to enter server-side JavaScript that is executed when the
entry is created. This is limited to this instance of the entry.

Values String: JavaScript. Within the JavaScript any of the current Entry block
properties can be accessed.

Example In this example the CreateScript property sets themaximum length of this
instance of the Entry block comp_name to 20 characters.

r = CRM.FindRecord('Company','Comp_companyid=30');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_name');

NewE.CreateScript = "MaxLength=20";

CRM.AddContent(EG.Execute(r));

Response.Write(CRM.GetPage());

DefaultType

Description You use this property to set the default type of the entry. This is used in
conjunction with the EntryType and DefaultValue properties.

Values Numerical:
0 (iDefault_NoDefault). No default value.
1 (iDefault_Value). Use the value set in the DefaultValue property.
2 (iDefault_CurrentUserId). For fields that hold a user id, this defaults to
the current logged in user.
6 (iDefault_CurrentDateTime). For date time fields, this defaults them to
the current date and time.
14 (iDefault_CurrentDateTimePlus30Mins). Also for date time fields, this
defaults them to the current date and time plus 30minutes.

Example The following example sets the default text of the Entry Block Company
Name to use the value set in the DefaultValue property.

R = CRM.CreateRecord('company');

EG = CRM.GetBlock('companyboxlong');RevenueE =

EG.GetEntry('comp_name');

RevenueE.DefaultType = 1;

RevenueE.DefaultValue = 'New company name';

CRM.AddContent(EG.Execute(R));

Response.Write(CRM.GetPage());

8-46 Sage CRM

Chapter 8: ASP Object Reference

DefaultValue

Description Specifies the default value given to the field when a new record is
created. You can only use this property if you have already set the
DefaultType property to iDefault_DefaultValue (1).

Values Any string value.

Parameters None

Example The following example sets the default text of the Entry block Company
Name.

R = CRM.CreateRecord('company');

EG = CRM.GetBlock('companyboxlong');

E = EG.GetEntry('comp_name');

E.DefaultType = 1;

E.DefaultValue = 'New company name';

CRM.AddContent(EG.Execute(R));

Response.Write(CRM.GetPage());

EntryType

Description Used to change the way that the field can be edited. This is only relevant
to EntryBlocks not tied to actual fields, that is, EntryBlocks that are the
result of a call to CRM.GetBlock("entry").

Values 10 iEntryType_Text . Single line text entry.
11 iEntryType_MultiText. Multi line text entry.
12 iEntryType_EmailText. E-mail address.
13 iEntryType_UrlText. WebURL address.
21 iEntryType_Select. Selection from lookup (combo box).
23 iEntryType_ChannelSelect. Select from channel table.
25 iEntryType_ProductSelect. Select from product table .
28 iEntryType_MultiSelect. Multiple selection from lookup (combo box).
31 iEntryType_Integer. Enter an integer.
45 iEntryType_CheckBox. Checkbox.
49 iEntryType_Password. Password.
51 iEntryType_Currency. Currency.

Example You specify a FieldName before the EntryType.

Entry=CRM.GetBlock('entry')

Entry.FieldName="Check Box";

Entry.EntryType= 45;

Developer Guide 8-47

Chapter 8

FAM

Description Enables the family of the EntryGroup to be set. This controls what
captions appear on each entry. By default the caption shown is the
translation for the caption family (column names) plus the caption code
(field name). You can change the caption by changing the FAM value and
adding a translation for that FAM and the field name.
Note that you can view a list of column names in Administration |
Customization | Translations.

Values Fam : String, the new family to use to find the translation for the caption
on the entry.

Example The following example changes the caption family of the comp_name
entry.

c=CRM.GetContextInfo('company','Comp_CompanyId');

CompanyRec=CRM.FindRecord('company','Comp_CompanyId='+c);

CompanyBlock=CRM.GetBlock("companyboxlong");

name = CompanyBlock.GetEntry('comp_name');

name.Fam = 'My Family';

Response.Write(CompanyBlock.Execute(CompanyRec));

FieldName

Description Specifies the name by which the field is referenced. This property is only
relevant on EntryBlocks that are not tied to actual fields, that is,
EntryBlocks that are the result of a call to CRM.GetBlock("entry").

Values Any string value.

Parameters None

Example Entry.FieldName = "Name";

The following example sets the name of the new check box entry to
Check Box.
Note that you specify the FieldName before you set the EntryType.

Entry=CRM.GetBlock("entry");

Entry.FieldName="Check Box";

Entry.EntryType=45;

CRM.AddContent(Entry.Execute());

Response.Write(CRM.GetPage());

8-48 Sage CRM

Chapter 8: ASP Object Reference

Hidden

Description Enables an Entry to be set as hidden, which prevents it from being
displayed when the EntryGroup it is in is executed. This is useful if you
want to tag an entry to an entry group but do not want customers to view
it.

Values Boolean: True, false.

Example The following example sets the company_revenue Entry block to be
hidden.

r = CRM.FindRecord('Company','Comp_companyid=22');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_revenue');

NewE.Hidden = true;

CRM.AddContent(EG.Execute));

Response.Write(CRM.GetPage());

JumpEntity

Description Allows the field (in view mode) to be hyperlinked to an entity summary
screen.
Note that the entity must be relevant to the field, that is, the identity field
of the entity selectedmust exist within the table or view on which the
screen is based. In practice, this is only useful when the screen is based
on a view that contains fields frommultiple tables.

Values Entity Name: Company, Person, Communication, Case, Opportunity,
Solution, Address, Library or Notes.

Example The following example sets the company name field in the
companyboxlong to jump to the company entity.

c=CRM.GetContextInfo('company','Comp_CompanyId');

CompanyRec=CRM.FindRecord('company','Comp_CompanyId='+c);

userLevel=CRM.GetContextInfo('user','User_Per_Admin');

//Start with the Company Entry Screen

CompanyBlock=CRM.GetBlock('companyboxlong')

// jump from comp_name to company

name = CompanyBlock.GetEntry('comp_name');

name.JumpEntity = 'Company';

CRM.AddContent(CompanyBlock.Execute(CompanyRec));

Response.Write(CRM.GetPage());

Developer Guide 8-49

Chapter 8

LookUpFamily

Description Allows the Lookup family to be set on an entry if entry type is 21
(selection). The lookup family defines what entries appear in the list for
this entry. For example, if the lookup family is 'DayName' you get a list of
days.

Values Lookup family: String, the name of the family.

Example The following example creates a new selection entry group that uses the
DayName family for selection items.

NewE = CRM.GetBlock("entry");

NewE.EntryType = 21;

NewE.Caption="Days of the week";

NewE.LookupFamily = "DayName";

EG.AddBlock(NewE);

CRM.AddContent(EG.Execute());

Response.Write(CRM.GetPage());

MaxLength

Description Controls themaximum amount of characters that can be entered into an
EntryGroup block when editing this entry. This does not change the size
of the entry box, only the number of characters that can be entered.

Values Numeric value, number of characters to edit.

Example The following example sets the entry block comp_name to allow only five
characters.

r = CRM.FindRecord('Company','Comp_companyid=22');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_name');

NewE.MaxLength = 5;

CRM.AddContent(EG.Execute(r));

Response.Write(CRM.GetPage());

8-50 Sage CRM

Chapter 8: ASP Object Reference

MultipleSelect

Description This property can be set on any Entry Block that has Entry type = 21
(selection), and defines whether you can select more than one item from
the list. If you use this property youmust save themultiple values in a
relevant location, for example in a link table.
If you set theMultipleSelect property to 'true', you should ensure that the
size of the block is sufficient to accommodate all the entries.

Values Boolean value: True or false.

Example The following example sets the company territory Entry block of the
companyboxlong entry group to bemultiple select, and sets the size of
the entry to 10.

b = CRM.GetBlock('companyboxlong');

e = b.GetBlock('comp_source');

e.MultipleSelect=true;

e.Size = 10;

r = CRM.FindRecord('company','comp_companyid=892');

CRM.AddContent(b.Execute(r));

Response.Write(CRM.GetPage());

OnChangeScript

Description Specifies the JavaScript to be executed when the value in the field is
edited. You can only use this property when the ReadOnly property is set
to false.

Values String of JavaScript.

Example Entry.OnChangeScript = "alert('field changed')";

The following example displays an alert box when a user's first name is
changed.

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');

ThisPersonRecord=CRM.FindRecord('Person','Pers_PersonId=17');

PersonBlock = CRM.GetBlock('PersonBoxLong');

FirstName = PersonBlock.GetEntry('Pers_FirstName');

FirstName.OnChangeScript="alert('Name Changed')";

CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));

Response.Write(CRM.GetPage());

Developer Guide 8-51

Chapter 8

ReadOnly

Description Specifies that a field is read-only. If this is set to true, the value in the field
is not editable.

Values Boolean: True, false.

Example Entry.ReadOnly = 'false';

The following example sets the TitleCode field in the PersonBoxLong
entrygroup to be read only.

Record=CRM.FindRecord('person', 'pers_personid=17');

PersonBlock = CRM.GetBlock('PersonBoxLong');

Title = PersonBlock.GetEntry('Pers_Titlecode');

Title.ReadOnly = 'true';

CRM.AddContent(PersonBlock.Execute(Record));

Response.Write(CRM.GetPage());

Required

Description Specifies that a valuemust be entered in this field. If no value is entered a
validation error is displayed.

Values Boolean: True, false.

Example Entry.Required = true;

The following examplemakes the pers_title field a required field.

Block=CRM.GetBlock('PersonBoxShort');

Title=Block.GetEntry('Pers_Title');

Title.Required = true;

CRM.AddContent(Block.Execute());

Response.Write(CRM.GetPage());

8-52 Sage CRM

Chapter 8: ASP Object Reference

Size

Description Specifies the size of the field displayed on-screen. This is the length of
the field in characters.

Values Any integer.

Examples Example Entry.Size = 40;

The following example retrieves the FirstName field from the
PersonBoxLong screen and sets its size to 40 characters.

ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');

ThisPersonRecord =

CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);

PersonBlock = CRM.GetBlock('PersonBoxLong');

FirstName = PersonBlock.GetEntry('Pers_FirstName');

FirstName.Size = 40;

CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));

Response.Write(CRM.GetPage());

ValidateScript

Description Enables you to set a validation script on an Entry block. You use this to
enter server-side JavaScript that is executed when the entry is executed
in savemode.

Values String : JavaScript. You can set the ErrorStr variable within the script to
display a customized error message. The script should set the Valid
variable to true or false. If Valid is set to false, the screen remains in edit
mode and displays an error message. In addition, the field on which the
Validate script is set is be shownwith an orange questionmark symbol
(?) beside it.

Example The following example sets the Valid variable to true if the company name
field does not contain a value.
r = CRM.FindRecord('Company','Comp_companyid=30');

EG = CRM.GetBlock('companyboxlong');

NewE = EG.GetBlock('comp_name');

NewE.ValidateScript = "Valid = (comp_name.value != '');if (!Valid)

ErrorStr = 'Please correct the highlighted entries';";

CRM.AddContent(EG.Execute(r));

Response.Write(CRM.GetPage());

Developer Guide 8-53

Chapter 8

AllowUnassigned

Description This property can be set on Entry blocks where the entry type is TableSelect, that is, for
lists to select Users. It allows you to change the caption used for the 'None' item in the
list to be 'Unassigned' instead. The effect of setting AllowUnassigned, depends on the
value of the AllowBlank property as follows:

AllowUnassigned Allow Blank Result

false false No 'None' option

true false Unassigned option

false true None' option

true true None' option

Values Boolean: True, False.

Example The following example displays a company block. When you click the Change button the
Account Manager selection includes the option Unassigned (instead of None).

EntryGroup = CRM.GetBlock('companyboxlong');

Record = CRM.FindRecord('Company','Comp_CompanyId=30');

UserSelect = EntryGroup.GetBlock('comp_primaryuserid');

UserSelect.AllowUnassigned = true;

UserSelect.AllowBlank = false;

CRM.AddContent(EntryGroup.Execute(Record));

Response.Write(CRM.GetPage());

Restrictor

Description You can set this property on Entry blocks that have entry type = 56
(Advanced Search Select) to select another Advanced Search Select
field that will restrict the searched values for the field.

Values WideString: readGet_Restrictor write: Set_Restrictor.

Example If you are creating a new Advanced Search Select field on a
communication screen, for example, you can restrict it based on an
existing Advanced Search Select field. Let's assume that the existing
field mentioned is used to search for companies.

Restrictor="cmli_comm_companyid".

This means if the existing field is filled in, the new field will only search for
records belonging to the selected company.

8-54 Sage CRM

Chapter 8: ASP Object Reference

CopyErrorsToPageErrorContent

Description When set to true, validation errors from this block will be shown at the top of the page,
rather than beside (each) block on the page. Use this property when you havemultiple
blocks on a single page.

Values Boolean

Example This script will create two entry blocks, one of which will fail validation. The
CopyErrorsToPageErrorContent setting will ensure that the resulting error is displayed
at the top of the page

CompanyEntryGroup=eWare.GetBlock("CompanyBoxLong");

CompanyEntryGroup.Title="Company";

AddressEntryGroup = eWare.GetBlock("AddressBoxLong");

AddressEntryGroup.Title = "Address";

//Set Valid=false so that this field will always fail validation no matter what

is entered

var address1field = AddressEntryGroup.GetEntry("addr_address1");

address1field.ValidateScript = "Valid=false;ErrorStr='Value not correct'";

//Set CopyErrorsToPageErrorContent = true for both of the blocks so that the

error message

//will appear at the top of the page

CompanyEntryGroup.CopyErrorsToPageErrorContent = true;

AddressEntryGroup.CopyErrorsToPageErrorContent = true;

container=eWare.GetBlock("container");

container.AddBlock(CompanyEntryGroup);

container.AddBlock(AddressEntryGroup);

CRMEntryGroupBlock Object
The EntryGroupBlock object corresponds to a screen in CRM. Themethods of the EntryGroupBlock
Object are used to group entries to create screens and control custom data entry and editing. You can
generatemany different kinds of entry groups, such as a Company Search Box, a Person Entry Box,
and a Case Detail Box. This block also contains the standard CRM buttons.

Developer Guide 8-55

Chapter 8

Methods

AddEntry(EntryName, Position, Newline)

Description Allows new entries to be added dynamically to EntryGroups. The
changes do not apply outside the ASP page in which they are used.
Values Returns an EntryBlock object.

Parameters EntryName: Specifies the entry to be added. Can be passed in as either
the name of the field or as an actual EntryBlock that already exists. In
both cases, the field must be relevant to the existing EntryGroup Block,
that is, it must exist on the table that the EntryGroup Block is based on.

Position (Optional): Optional numerical parameter that specifies the
position in which to add the entry. Passing in a value of 0 (zero), inserts
the entry into the first position, minus one (-1) adds the entry to the end of
the group and so on. One (1) is the default behavior if the position is not
specified.

NewLine (Optional): Optional boolean parameter specifies if the entry is
to be shown on a new line or not. By default it is true.

Example This example adds the Fax Number and phone Number fields to the start
of the entry group.

EntryGroup = CRM.GetBlock("personboxlong");

EntryGroup.AddEntry("pers_faxnumber", 0, false)

EntryGroup.AddEntry("pers_phonenumber",0,false);

CRM.AddContent(EntryGroup.Execute())

Response.Write(CRM.GetPage());

DeleteEntry(EntryName)

Description Deletes the specified entry from the group.

Values No return value.

Parameters EntryName: String, the name of the field within the EntryGroup that is to
be deleted.

Example This example removes the Revenue field from CompanyBoxLong for non
administration users.
R = CRM.FindRecord('Company','Comp_CompanyId=30');

MyC = CRM.GetBlock('CompanyBoxLong');

userLevel=CRM.GetContextInfo('user','User_Per_Admin');

if (userLevel < 3) {MyC.DeleteEntry('Comp_Revenue');}

CRM.AddContent(MyC.Execute(R));

Response.Write(CRM.GetPage());

8-56 Sage CRM

Chapter 8: ASP Object Reference

GetEntry

Description This method returns a reference to the Entry specified.

Values Returns an EntryBlock object.

Parameters EntryName: The name of the field within the EntryGroup that is required.
If the field does not exist a nil object is returned.

Example The following example retrieves the Pers_FirstName entry from the
PersonBoxShort entrygroup and sets it to be read only.
ThisPersonId = CRM.GetContextInfo('Person','Pers_PersonId');

ThisPersonRecord =

CRM.FindRecord('Person','Pers_Personid='+ThisPersonId);

PersonBlock = CRM.GetBlock('PersonBoxShort');FirstName =

PersonBlock.GetEntry('Pers_FirstName');

FirstName.ReadOnly = true;

CRM.AddContent(PersonBlock.Execute(ThisPersonRecord));

Response.Write(CRM.GetPage());

Properties

ShowSavedSearch

Description Use this property to show the Saved Search functionality as part of the
entry group. This properly is only applicable to Entry Group Blocks where
the screen type is Search Block and the Block must have an associated
List. When you set this property to true, the execution of the block will
also show a list of the saved searches for that entity and allow you to
create and edit them. This would typically be used in a page that contains
an entry block and a list and is used to do searches.

Values Boolean: default value is false, set to true to enable.

Example searchEntry=CRM.GetBlock("ProjectsSearchBox");

searchEntry.ShowSavedSearch=true;

searchList=CRM.GetBlock("ProjectsGrid");

searchContainer=CRM.GetBlock("container");

searchContainer.ButtonTitle="Search";

searchContainer.ButtonImage="Search.gif";

searchContainer.AddBlock(searchEntry);

if(CRM.Mode != 6)

searchContainer.AddBlock(searchList);

searchContainer.AddButton(CRM.Button("Clear", "clear.gif",

"javascript:document.EntryForm.em.value='6';document.EntryForm.su

bmit();"));

searchList.ArgObj=searchEntry;

CRM.AddContent(searchContainer.Execute(searchEntry));

Response.Write(CRM.GetPage());

CRMFileBlock Object
The CRMFileBlock object provides access to external files that are not part of the system. It allows
these files to appear as if they are part of the system and to be called upon using ASP in the same
way as any other CRM page. Note that the files need to be formatted for HTML appearance. If you

Developer Guide 8-57

Chapter 8

don't specify where the file is stored in the directory path property, the system looks for the file in the
CRMReports directory.
An example of the use of this block is as follows:

var afile

afile=CRM.GetBlock('file');

afile.FileName='general.htm';

afile.Translate=false;

afile.ProperCase=false;

afile.DirectoryPath='C:\\directory\\folder\\';

CRM.AddContent(afile.Execute());

Response.Write(CRM.GetPage());

You can also select a translate option which dynamically chooses a file based on the user's language
code, or a propercase function which displays the text with initial caps. These simple ASP
statements includes the named file on the page. If the author chooses to set translate to 'true', the file
name included is changed from filename to filename_US or filename_DE, depending on the User's
language code in CRM. If the filename suffix is not supplied, .txt is assumed. This means you need to
specify ".htm" and format the text.

Properties

DirectoryPath

Description Specifies the directory where the files are contained. If you do not specify
the full directory path, the CRMReports directory is assumed.

Values Text : WideString

Example afile=CRM.GetBlock('file');

afile.FileName='Results.htm';

afile.DirectoryPath='c:\\directory\\folder';

FileName

Description Specifies the file name to be used by the FileBlock.

Values Text : WideString

Example afile=CRM.GetBlock('file');

afile.FileName='Results.htm';

ProperCase

Description Applies proper case formatting to the text, that is, the first letter of every
word is in uppercase.

Values Boolean: True, false. Default is false.

Example The following example sets the text of the file general.htm to propercase.
var afile

afile=CRM.GetBlock('file');

afile.FileName='general.htm';

afile.ProperCase=true;

CRM.AddContent(afile.Execute());

Response.Write(CRM.GetPage());

8-58 Sage CRM

Chapter 8: ASP Object Reference

Translate

Description When set to 'true' the block searches for a filename_userslanguage. In
the above example this is results_US.htm or results_FR.htm, depending
on the user's chosen language.

Values Boolean: True, false. Default is false.

Example afile=CRM.GetBlock('file');

afile.FileName='Results.htm';

afile.Translate=true;

CRMGraphicBlock Object
Description

The CRMGraphics Block object is a child of the CRM Block and parent of the PipeLineGraphic,
OrgChartGraphic and ChartGraphicBlock.
The block enables images to be displayed through an ASP page. Graphics Blocks aremore powerful
than standard static images because variables can be used in their creation. These variables may
represent live data from a database or incorporate details of the current user such as their privileges or
settings. Graphics created by the Graphics Block are recreated every time they are requested so,
where variables are used, the graphic is based on real time data.
The option to load in previously created images means that backgrounds can be employed or other
images can be altered to represent a new situation.
The graphics can consist of basic details, such as text and lines, or more complex graphics
employing various effects such as gradients and rotation.
To initiate this block:

graphic=CRM.GetBlock('graphic');

Methods

Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4)

Description Draws an elliptically curved line.
The arc traverses the perimeter of an ellipse that is bound by the points
(X1,Y1) and (X2,Y2). The arc is drawn following the perimeter of the
ellipse, counter clockwise, from the starting point to the ending point. The
starting point is defined by the intersection of the ellipse and a line defined
by the center of the ellipse and (X3,Y3). The ending point is defined by the
intersection of the ellipse and a line defined by the center of the ellipse
and (X4, Y4).

Parameters X1,Y1,X2,Y2,X3,Y3,X4,Y4 : integer

Example Graphic=CRM.GetBlock("graphic");

Graphic.ImageWidth=70;

Graphic.ImageHeight=50;

Graphic.Effect('ChangeColor','White,Red');

Graphic.Arc(10,10,25,25,30,30,40,40);

CRM.AddContent(Graphic.execute());

Response.Write(CRM.GetPage());

CRMGraphicBlock Object

Developer Guide 8-59

Chapter 8

Animation(Mode, Value)

Description TheGraphics Block supports animation. Frames contained in an
animation can be shown at varying intervals using the Delay mode. Using
'Add', the current state of the image is saved as a frame to be shown after
the specified delay. The whole animation can be looped for a definite or
indefinite number of times. This animation technique can also be used for
charts. The delay is specified where 100=1 second and indefinite loops
can be obtained by setting the Loop value to 0.

Parameters Mode : WideString, Value : Integer

Example Graphic.Animation('Delay','100'); Graphic.Animation('Loop','0');

Graphic.Animation('Add','100');

Brush(Mode, Value)

Description Changes the color and pattern used when drawing the background or
filling in graphical shapes. The pattern can be one of a predetermined list
using the Style mode or can be from an image using the Loadmode.

Parameters Mode : WideString, Value : WideString

Example Graphic.Brush('Load','c:\\winnt\\soap bubbles.bmp');

Graphic.Brush ('Color','Blue');

Graphic.Brush ('Fill','10,10,50,50');

Graphic.Brush ('Style','cross');

Chord(X1,Y1,X2,Y2,X3,Y3,X4,Y4)

Description Creates a shape that is defined by an arc and a line that joins the
endpoints of the arc. The chord consists of a portion of an ellipse that is
bound by the points (X1,Y1) and (X2,Y2). The ellipse is bisected by a line
that runs between the points (X3,Y3) and (X4,Y4).
The perimeter of the chord runs counter clockwise from (X3, Y3),
counterclockwise along the ellipse to (X4,Y4), and straight back to
(X3,Y3). If (X3,Y3) and (X4,Y4) are not on the surface of the ellipse, the
corresponding corners on the chord are the closest points on the
perimeter that intersect the line.

Parameters X1,Y1,X2,Y2,X3,Y3,X4,Y4 : integer.

Example Graphic.Chord(10,10,25,25,30,30,40,40);

8-60 Sage CRM

Chapter 8: ASP Object Reference

Effect(Mode, Value)

Description Makes various effects available. The name of the effect is passed
throughMode with parameters it may require being passed through Value.

Parameters Mode : WideString, Value : WideString

Example Graphic.Effect('Zoom','200');

Graphic.Effect('Transparent','True');

Graphic.Effect('Dither','Floyd');

Graphic.Effect('Merge','c:\\winnt\\winnt.bmp, White,0,0');

Graphic.Effect('DisplayErrors','false');

Graphic.Effect('Clear','');

Graphic.Effect('ChangeColor','White,Red');

Ellipse(X1,Y1,X2,Y2)

Description Draws a circle or ellipse.
Specify the bounding rectangle by giving the top left point at pixel
coordinates (X1, Y1) and the bottom right point at (X2, Y2).

If the bounding rectangle is a square, a circle is drawn. The ellipse is
drawn using the current pen width and color.

Parameters X1,Y1,X2,Y2 : integer

Example Graphic=CRM.GetBlock("graphic");

Graphic.ImageWidth=70;

Graphic.ImageHeight=50;

Graphic.Effect('ChangeColor','White,Red')

Graphic.Ellipse(10,10,50,50);

CRM.AddContent(Graphic.execute());

Response.Write(CRM.GetPage());

FlipHoriz()

Description Flips the image horizontally.

Parameters None.

Example Graphic.FlipHoriz();

FlipVert()

Description Flips the image vertically.

Parameters None.

Example Graphic.FlipVert();

Developer Guide 8-61

Chapter 8

Font(Mode, Value)

Description Allows for various changes to be carried out on the current font depending
on the value specified in Mode. These changes then take effect with
TextOut commands. To ensure success, use True Type fonts. Modes
available include:

l Name. Change the current typeface.
l Size. Size of font to use.
l Color. Color of font to use.
l Bold. Toggle between a bold typeface and normal.
l Italic. Toggle between the use of italics and normal.
l Underline. Toggle between using underline and normal.
l Strikeout. Toggle between having text striked out and normal.
l Rotate. Performs a rotation on the font, although this does not

work for all fonts.

Parameters Mode : WideString, Value : WideString.

Example Graphic.Font('Name','Times New Roman');

Graphic.Font('Color','Blue');

Graphic.Font('Size','24');

Graphic.Font('Bold','True'); Graphic.Font('StrikeOut','True');

Graphic.Font('Rotate','45');

Graphic Font Properties Example:

<%

Graphic=CRM.GetBlock("graphic");

Graphic.LoadImage("go.gif");

Graphic.ImageWidth=130;

Graphic.ImageHeight=50;

Graphic.vSpace=30;

Graphic.hSpace=30;

Graphic.Border=3;

Graphic.Font('Name','Times New Roman');

Graphic.Font('Color','Blue');

Graphic.Font('Size','24');

Graphic.Font('Bold','True');

Graphic.Font('StrikeOut','True');

CRM.AddContent(Graphic.execute());

Response.Write(CRM.GetPage());%>

FontColor(Color)

Description Enables the color of the current font to be changed depending on the
value specified. This is the same as using the Font(Mode, Value) except
it refers only to the color mode. It is quicker to use if this is the only mode
you are resetting.

Parameters Color: Text, widestring, color of font to use.

Example Graphic.FontColor('blue');

8-62 Sage CRM

Chapter 8: ASP Object Reference

FontSize(Size)

Description Enables the size of the current font to be changed depending on the value
specified. This is the same as using the Font(Mode, Value) except it
refers only to the sizemode. It is quicker to use if this is the only mode
you are resetting.

Parameters Size: The size of the font to use, in pixels.

Example Graphic.FontSize(24);

GradientFill(StartColor, EndColor, Direction, Colors)

Description Fills the graphic with a gradient of colors starting from the color specified
in StartColor and ending with the one specified in EndColor. The Direction
can be TopToBottom, BottomToTop, LeftToRight or RightToLeft. 'Colors'
is a numeric parameter that specifies the number of colors to use when
creating your gradient. This defaults to 64. Themore colors used, the
better the gradient effect. Gradients usually look better in 24 bit JPEG
images, as the colors that can be used with GIFs is more limiting.

Parameters StartColor : WideString, EndColor : WideString, Direction : WideString,
Colors : Integer

Example Graphic.GradientFill('Yellow','White','LeftToRight');

Graphic.GradientFill('Blue','White','TopToBottom',256);

GrayScale()

Description Converts an image to grayscale. It does not reduce the number of colors
in use.

Parameters None

Example Graphic.Grayscale();

LoadBMP(Filename)

Description This method is the same as the LoadImageGraphic block method except
that it enables you to specifically load a bitmap file.
Loads the file specified as the new image. The ImageWidth and
ImageHeight changes to the dimensions of the new image.

Parameters Filename: Text, widestring, absolute server address.

Example This example loads a bitmap image called redmarble.bmp.
Graphic=CRM.GetBlock('graphic');

Graphic.LoadBMP("D:\\Program

Files\\Sage\\CRM\\CRM58\\WWWRoot\\Img

\\plain.bmp");

CRM.AddContent(Graphic.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-63

Chapter 8

LoadImage(text)

Description Loads the file specified as the new image. The ImageWidth and
ImageHeight changes to the dimensions of the new image. The following
image formats are supported:

l .BMP, Windows Bitmap
l .ICO, Icon
l .GIF, 256 color compressed image.
l .JPG, 24 bit color compressed image
l .WMF / .EMF, Windows / EnhancedMetafile

If you store the image in the Img folder of the CRM directory, you need
only name the file. Otherwise, youmust include the complete path.

Parameters Text : Widestring.

Example On the server:
Graphic.LoadImage('cancel.gif');

\\Server absolute address:

Graphic.LoadImage('c:\\winnt\\cancel.gif');

LoadJPG(Filename)

Description This method is the same as the LoadImagemethod except that it enables
you to specifically load a JPEG file.
Loads the file specified in text as the new image. The ImageWidth and
ImageHeight changes to the dimensions of the new image.

Parameters Filename: Text, widestring

Example This example displays a JPEG file called dashboard.jpg.
Graphic=CRM.GetBlock('graphic');

Graphic.LoadJPG("D:\\Program

Files\\Sage\\CRM\\CRM58\\WWWRoot\\Img\\

recentbackground.jpg");

CRM.AddContent(Graphic.Execute());

Response.Write(CRM.GetPage());

LineTo(X,Y)

Description Draws a line from the current pen position up to, but not including the
points specified by the numbers in X and Y. This method also changes
the pen position to the co-ordinates specified in (X,Y). The line is drawn
using the current pen width and color.

Parameters X,Y : Integer

Example Graphic.LineTo(50,50);

8-64 Sage CRM

Chapter 8: ASP Object Reference

Monochrome()

Description Converts an image tomonochrome using only two colors, black and
white. Note that when an image is set to monochrome, the changes that
occur are irreversible unless the image is redrawn.

Values Boolean: True, false.

Example Graphic.Monochrome(true);

MoveTo(X,Y)

Description MoveTo changes the pen position to co-ordinates specified in (X,Y). Use
MoveTo to set the current pen position before calling LineTo.

Parameters X,Y : integer

Example Graphic.MoveTo(50,50);

Pen(Mode, Value)

Description Allows for various changes to be carried out on the current pen,
depending on the value specified in Mode. Any line drawing commands,
such as Arc and Rectangle, used after this command are affected.
Modes available include:

l Style. Allows for different line styles, for example DashDot.
l Color. Color of pen drawings.
l Width. Determines the thickness of the pen in pixels.

Parameters Mode : WideString
Value : WideString

Example Graphic.Pen('Style','DashDot');

Graphic.Pen('Color','Blue');

Graphic.Pen('Width','3');

PenColor(Color)

Description Enables the color of the current pen to be changed depending on the value
specified. This is the same as using the Pen(Mode, Value) except it
refers only to the color mode.

Parameters Color: Text, widestring, color of pen to use.

Example Graphic.PenColor('green');

Developer Guide 8-65

Chapter 8

PenWidth(Width)

Description Enables the width of the current pen to be changed depending on the
value specified. This is the same as using the Pen(Mode, Value) except it
refers only to the widthmode.

Parameters Width: The width of pen to use, in pixels.

Example Example Graphic.PenWidth('3');

PieShape(X1,Y1,X2,Y2,X3,Y3,X4,Y4)

Description Draws a pie-shaped wedge on the image.
The wedge is defined by the ellipse bound by the rectangle determined by
the points (X1, Y1) and (X2, Y2). The section drawn is determined by two
lines radiating from the center of the ellipse through the points (X3, Y3)
and (X4, Y4).

Parameters X1,Y1,X2,Y2,X3,Y3,X4,Y4 : integer.

Example Graphic.PieShape(10,10,25,25,30,30,40,40);

Rectangle(X1,Y1,X2,Y2)

Description Draws a rectangle.
Specify the rectangle by giving the top left point at pixel coordinates (X1,
Y1) and the bottom right point at (X2, Y2).

The rectangle is drawn using the current pen width and color.

Parameters X1,Y1,X2,Y2 : integer

Example Graphic.Rectangle(10,10,100,100);

CRMGraphicBlock Object

Resize(Width, Height)

Description Specifies the new width and height of your image. Unlike ImageWidth
and ImageHeight, the image is scaled to this new size. You should not
set the ImageWidth and ImageHeight properties in the same block as
they take precedence.

Parameters Width, Height: Integers.

Example Graphic.Resize(150,100);

8-66 Sage CRM

Chapter 8: ASP Object Reference

Rotate(Number)

Description Use this function to rotate an image by a specified number of degree
points. The corners of a rotated image are colored in the current brush
color.

Parameters Number : Integer (0-360, corresponds to degrees).

Example Graphic.Rotate(90);

RoundRect(X1,Y1,X2,Y2,X3,Y3)

Description Use RoundRect to draw a rounded rectangle.
The rectangle has edges defined by the points (X1,Y1), (X2,Y1), (X2,Y2),
(X1,Y2), but the corners are shaved to create a rounded appearance.

The curve of the rounded corners matches the curvature of an ellipse with
width X3 and height Y3. The rounded rectangle is drawn using the current
pen width and color.

Parameters X1,Y1,X2,Y2,X3,Y3 : integer

Example Graphic.RoundRect(10,10,12,12,15,15);

SaveAsGifs

Description Determines whether an image should be stored as aGIF (256 colors) or a
JPEG image (16m colors). If the server's display adapter is set to allow
for 16m colors, this property is set to false by default, otherwise it is set to
true.

Values Boolean: True, false.

Example Graphic.SaveAsGifs=true;

SaveAsJPG(text)

Description Saves the current image in the JPEG image file format. Images are
stored using 16million colors.
Note that JPEG images do not have an option for transparency or
animation.

Parameters Text : Widestring

Example Graphic.SaveAsJPG('c:\\cancel.jpg');

Developer Guide 8-67

Chapter 8

TextOut(X, Y, Text, transparent=True/False)

Description You use TextOut to write some text in your image. As an option, the text
can bemade transparent. By default, the text creates a blank rectangle
where it is placed. It is written in co-ordinates specified in (X,Y) and is
written in the current font color and size.

Parameters X,Y : integer
text : WideString
transparent: true/false

Example Graphic.TextOut(10,10,'test',true);

TextOutCenter(Left, Top, Right, Bottom, Text, Transparent, Ellipse)

Description Writes text to your image inmuch the sameway as TextOut but can
center it in a rectangle area defined by the parameters passed to it. If
Ellipse is set to true, it can also add '.' to the end of text if that text cannot
fit into the rectangle without being truncated.

Parameters Left,Top,Right,Bottom : integer,
Text : WideString, Transparent=true/false, Ellipse=true/false

Example Graphic.TextOutCenter(10,10,100,30,'hello',true,true);

Properties

Border

Description Controls the thickness of the border around the image.

Values Integer, default is 0.

Example Graphic.Border=1;

Description

Description Specifies the description of the image. For browser users with image
loading switched off, the description specified in this parameter takes its
place.

Values Text : WideString.

Example Graphic.Description="Image description";

8-68 Sage CRM

Chapter 8: ASP Object Reference

hSpace

Description Controls the horizontal space above and below the image.

Values Integer, default is 0.

Example Graphic.hSpace=10;

ImageHeight

Description Specifies the height of the image. Dimensions in pixels. This is the height
of the box in which the image is loaded.

Values Integer, default is 0.

Example Graphic.ImageHeight=200;

ImageWidth

Description Specifies the width of the image. Dimensions in pixels. This is the width
of the box in which the image is loaded.

Values Integer, default is 0.

Example Graphic.ImageWidth=200;

SaveAsGIF(text)

Description Saves the current image in the GIF image file format. Images are stored
using 256 colors.

Parameters Text : Widestring

Example Graphic.SaveAsGif('c:\\test.gif')

vSpace

Description Controls the vertical space above and below the image.

Values Integer, default is 0.

Example Graphic.vSpace=10;

CRMGridColBlock Object
The CRMGridColBlock is used to set the properties of an individual columnwithin a list. The
GridColBlock object is related to the List Block but is a child of the CRM block. The properties that
apply are similar to the fields available when adding columns to a Custom List within Administration |
Customization | <Entity> | Lists.
Preceding Text:

Developer Guide 8-69

Chapter 8

ListBlock=CRM.GetBlock("companygrid")

ListBlock.AddGridCol("gridcolname")

ListBlock.GetGridCol("gridcolname")

Properties

Alignment

Description Specifies the alignment of text within the column.

Values Left, right, center. Default is left.

Example The following example sets the text in the Source column to be right-
aligned.
CaseListBlock = CRM.GetBlock('CaseListBlock');

Source = CaseListBlock.AddGridCol('Case_Source');

Source.AllowOrderBy = true;

Source.Alignment = 'right';

CRM.AddContent(CaseListBlock.Execute());

Response.Write(CRM.GetPage());

AllowOrderBy

Description Specifies that the list can be sorted by the values in the column.

Values Boolean: True, false.

Example
GridCol.AllowOrderBy = True;

The following example adds a new column to a list that can sort the list.
CaseListBlock = CRM.GetBlock('CaseListBlock');

FoundIn = CaseListBlock.AddGridCol('Case_FoundVer');

FoundIn.AllowOrderBy = true;

CRM.AddContent(CaseListBlock.Execute());

Response.Write(CRM.GetPage());

8-70 Sage CRM

Chapter 8: ASP Object Reference

CustomActionFile

Description This property is relevant when the JumpAction property is set to '430'. Enables a
column to be hyperlinked to an ASP file. When an item in this column is selected
the ASP file is called up, passing in the value of the field set in the
CustomIdField property in the query string.

Values The name of the ASP file.

Example The following example sets the custom jump to the invoices ASP page.
list = CRM.GetBlock('CompanyGrid');

g = list.GetGridCol('comp_name');

g.JumpAction = 430;

g.CustomIdField = 'comp_companyid';

g.CustomActionFile = 'invoices.asp';

CRM.AddContent(list.Execute("comp_name like 'eu'"));

Response.Write(CRM.GetPage());

In the ASP file, the code can pick up on the unique Id as follows:
ThisComp = Request.QueryString('comp_companyid');

Note that when you reference a value from the QueryString (or a form

field),

always reference the value rather than the object itself, as above or

a=Request.QueryString("field")()

If there is a possibility of a QueryString field being duplicated, test its length and
reassign the variable.

CustomIdField

Description If CustomActionFile is set on a column, this property allows a value to be
passed to the custom file when the column is selected. The value is
passed on the query string in the form "FieldName=Value".

Values The name of any field within the view for the list.

Parameters None

Example The following example sets the Id field for the custom jump to the comp_
companyid field.
list = CRM.GetBlock('CompanyGrid');

g = list.GetGridCol('comp_name');

g.JumpAction = 430;

g.CustomIdField = 'comp_companyid';

g.CustomActionFile = 'test.asp';

CRM.AddContent(list.Execute("comp_name like 'o%'"));

Response.Write(CRM.GetPage());

Developer Guide 8-71

Chapter 8

JumpEntity

Description Allows a column to contain hyperlinked values to another entity summary
screen. The entity must be relevant to the list, that is, the column of the
entity must exist within the view or table on which the list is based. For
example, it is possible to jump to anOpportunity from anOpportunity List
but not from aCase List.

Values Entity Name: Company, Person, Communication, Case, Address,
Library, Notes, or Custom table.

Example The following example sets the jump on the pers_firstname column.
PersonList=CRM.GetBlock("persongrid");

GridCol=PersonList.GetGridCol("pers_firstname");

GridCol.JumpEntity="person";

CRM.AddContent(PersonList.Execute(''));

Response.Write(CRM.GetPage());

ShowHeading

Description Specifies whether the heading should be shown on the column.

Values Boolean: True, false. Default is true.

Example The following example adds a column 'case_source' to the case list and
disables the heading display.
CaseListBlock = CRM.GetBlock('CaseListBlock');

Source =

CaseListBlock.AddGridCol('Case_Source');Source.ShowHeading =

false;

Source.Alignment = 'LEFT';

CRM.AddContent(CaseListBlock.Execute());

Response.Write(CRM.GetPage());

ShowSelectAsGif

Description Specifies whether the values in the column should be shown as GIF
images instead of Text. This is relevant if the column is a Select type and
there are GIF files in the folder for each option on the list.

Values Boolean: True, false. Default is false.

Example GridCol.ShowSelectAsGif = true;

CRMListBlock Object
You use the CRMListBlock object to create and display lists. This block is a child the of CRMBlock
and parent of the GridColBlock. You can link the list block to a search EntryGroup Block and use the
search result as the argument for the List Block.
Preceding code:

ListBlock=CRM.GetBlock('companygrid');

8-72 Sage CRM

Chapter 8: ASP Object Reference

Methods

AddGridCol(ColName, Position, AllowOrderBy)

Description Enables you to add new grid columns dynamically to List blocks. The
changes do not apply outside the ASP pages they are used in.

Parameters ColName: Specifies the column to be added. This should be passed in
as the name of the field. The field must be one that is relevant to the List
block-it must be available within the table or view on which the List Block
is based.
Position (Optional): Numeric parameter that specifies the position in
which to add the grid column. Passing in a value of 0 (zero), inserts the
column into the first position and so on. Passing in-1 (minus one) adds the
column to the end of the List. This is the default behavior if the Position is
not specified.

AllowOrderBy (Optional): Boolean parameter specifies if the columnmay
be ordered or not. By default it is false.

Example The following example adds a new orderable column 'comp_revenue' to
the end of the company grid list.
MyList=CRM.GetBlock('CompanyGrid');

MyList.AddGridCol('comp_revenue', -1, true);

CRM.AddContent(MyList.Execute());

Response.Write(CRM.GetPage());

DeleteGridCol(ColName)

Description This property deletes the specified column name from the list.

Parameters ColName: The name of the columnwithin the list that is to be deleted.

Example The following example deletes the comp_website column in the
company list
ListBlock = CRM.GetBlock("companygrid");

ListBlock.DeleteGridCol("comp_website");

CRM.AddContent(ListBlock.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-73

Chapter 8

Execute(Arg)

Description Displays a list depending on the argument entered.

Parameters Arg: Argument. If the argument is a string it is taken to be theWHERE
clause of an SQL statement. If the argument is an entrygroup, the entry is
used to form the SQLWHERE clause.

Example Example 1: This examples lists all the companies of type 'Customer'.
ListBlock=CRM.GetBlock("companygrid");

CRM.AddContent(ListBlock.Execute("comp_type='Customer'"));

Response.Write(CRM.GetPage());

Example 2: This example uses the result of the search entrygroup as the
argument for the list.
SearchContainer = CRM.GetBlock('Container');

SearchBlock = CRM.GetBlock('PersonSearchBox');

SearchContainer.AddBlock(SearchBlock);

if (CRM.Mode == 2) {

resultsBlock = CRM.GetBlock('PersonGrid');

resultsBlock.ArgObj = SearchBlock;

SearchContainer.AddBlock(resultsBlock);}

CRM.AddContent(SearchContainer.Execute());

Response.Write(CRM.GetPage());

GetGridCol

Description Returns a reference to the grid column specified. You can then set the
individual properties for the column using the properties of the
CRMGridColBlock Object.

Values Returns aGridColBlock object.

Parameters GridColName: The name of the columnwithin the List that is required. If
the column does not exist a nil object is returned.

Example Col = List.GetGridCol("pers_firstname");

The following example returns the company name column and enables
the list to be ordered by this column.
ListBlock = CRM.GetBlock("companygrid");

Column=ListBlock.GetGridCol("comp_name");

Column.allowOrderby =true;

CRM.AddContent(ListBlock.Execute());

Response.Write(CRM.GetPage());

8-74 Sage CRM

Chapter 8: ASP Object Reference

Properties

CaptionFamily

Description Enables the caption family on a list to be set so that valid translations can
be added for the captions at the top of the list.
When the CaptionFamily is set then translations are added to that family
using the following codes:

l Name: The name of the caption family
l NoRecordsFound: The caption when there are no records in the

list.
l RecordsFound: The caption when there are records in the list.
l RecordFound: The caption when there is one record in the list.
l PreRecordsFound: The caption before the number when records

are found.
l PreRecordFound: The caption before the number when 1 record is

found.

Value String : The new family for the list.

Example The following example changes the translation family for the company
list to 'Campaigns'.
MyList = CRM.GetBlock('CompanyGrid');

MyList.CaptionFamily="Campaigns";

CRM.AddContent(MyList.Execute());

Response.Write(CRM.GetPage());

PadBottom

Description Displays empty rows so that the number of rows set by RowsPerScreen
always displays.

Values Boolean: True or false. Default is true.

Example Listblock.PadBottom=true;

The following example disables the PadBottom property so that empty
rows are not shown at the end of a list. If there are no rows to be displayed
the column headers are still displayed.
List=CRM.GetBlock('companygrid');

List.RowsPerScreen=8;

List.PadBottom=false;

CRM.AddContent(List.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-75

Chapter 8

prevURL

Description You use this property if any of the columns in the List block have links to a
main entity-Company, Person, Opportunity, Case, Lead, Solution.

Value The property should be set to the URL for the ASP page which draws the
list block.

Example The following example tells the DLL that the previous dominant key was
a custom page and also where to go back to.
&Key-1=iKey_CustomEntity&PrevCustomURL=PrevUrl

RowsPerScreen

Description Sets the number of rows displayed on each screen. You use this property
to limit the number of rows displayed per screen, and then use the forward
and back buttons to display next or previous screens.
Note that each user has aGrid Size setting in their Preferences. This
setting takes precedence over the RowsPerScreen setting (except where
you are using the ListBlock in a CRMSelfService Object (page 8-95)).

Parameters None

Example
The following example displays a list of companies eight rows at a time.

ListBlock = CRM.getBlock("CompanyGrid")

ListBlock.RowsPerScreen = 8;

CRM.AddContent(ListBlock.Execute());

Response.Write(CRM.GetPage());

SelectSql

Description Changes the SQL used to select what items appear in the list. The
property can only be used (andmust be used) when the List block is not
based on an existing grid or list. For example, you use this property when
the List Block is a result of a call to CRM.GetBlock('List').

Value String: A SQL SELECT clause in the form: 'SELECT * FROM table or
view name' You should not put anything after the table or view name, the
list takes care of theWHERE clause.

Example The following example displays a list of the company names from the
view vCompany.
NewList=CRM.GetBlock("list");

NewList.SelectSql="Select * from vCompany";

NewList.AddGridCol("Comp_Name");

CRM.AddContent(NewList.Execute());

Response.Write(CRM.GetPage());

8-76 Sage CRM

Chapter 8: ASP Object Reference

CRMMarqueeBlock Object
You use theMarqueeBlock object to add scrolling text, for example a news ticker, to a page. It is a
child of the CRM Block object. TheMarquee block reads from the Custom Captions table for news
headlines and news story links and builds a scrolling display. You can control the direction of the
scrolling, the positioning, the speed, and the style sheet used. The news content is maintained in
CRM in Administration | Customization | Translations. The object provides a dismiss button which is
overwritten when the news changes.
You call theMarquee block from an ASP page as follows:

var Marquee

Marq=CRM.GetBlock('marquee');

Marq.VerticalMinimum=150;

Marq.VerticalMaximum=150;

Marq.HorizontalMinimum=70;

Marq.HorizontalMinimum=70;

CRM.AddContent(Marq.Execute());

Response.Write(CRM.GetPage());

The block has six properties that can bemodified:

l VerticalMinimuminteger
l VerticalMaximuminteger

Where VerticalMinimum and VerticalMaximum differ, themarqueemoves vertically when scrolling.

l HorizontalMinimuminteger
l HorizontalMaximuminteger

Where HorizontalMinimum andHorizontalMaximum differ, themarqueemoves horizontally when
scrolling.

l StyleSheetstring, allows you to specify the style
l ScrollSpeedinteger

For horizontal scrolling, you set VerticalMinimum and VerticalMaximum to the same value. For
vertical scrolling you set HorizontalMinimum andHorizontalMaximum to the same value.
The block expects the news headlines and news stories to be created using CRM translation
handling. You access this in CRM through Administration | Customization | Translations. The caption
family for news headlines should be news_headline and the link for a news story has a caption family
of news_story. News stories must have the same caption code as their associated headline.

Properties

HorizontalMaximum

Description Specifies the X boundary to the right of the screen for themarquee.

Values Integer, default is 800

Example Marq=CRM.GetBlock('marquee');

Marq.HorizontalMaximum=800;

Developer Guide 8-77

Chapter 8

HorizontalMinimum

Description The horizontal minimum is the starting point of themarquee on the X-axis.

Values Integer, default is 0.

Example Marq=CRM.GetBlock('marquee');

Marq.HorizontalMinimum=0;

ScrollSpeed

Description Determines the speed of the text as it moves on the screen.

Values Integer, default is 120.

Example Marq=CRM.GetBlock('marquee');

Marq.ScrollSpeed=200;

StyleSheet

Description Allows the alteration of the way the text is displayed. You provide a link to
a cascading style sheet that includes the styles you require for the
marquee.

Values Text : WideString, default is DiagonalText

Example Marq=CRM.GetBlock('marquee');

Marq.StyleSheet='NewStyle.css';

VerticalMaximum

Description Specifies themaximum vertical position of themarquee before returning
to the VerticalMinimum value.

Values Integer, default is 300

Example Marq=CRM.GetBlock('marquee');

Marq.VerticalMaximum=100;

VerticalMinimum

Description Specifies the Y location of themarquee as it appears in the browser
window, where 0 is at the top of the screen.

Values Integer, default is 300

Example Marq=CRM.GetBlock('marquee');

Marq.VerticalMinimum=100;

8-78 Sage CRM

Chapter 8: ASP Object Reference

CRMMessageBlock Object
You use the CRMMessageBlock object to sendmessages in SMS and e-mail format. It is a child of
the CRMObject. The block can be included in ASP pages to show a simple e-mail form or to
automate themessage sending in response to a certain event. It can be used in visual and in hidden
mode, see DisplayForm andMode properties.
To initiate this block:

MessageBlock=CRM.GetBlock('messageblock');

Messaging Components and Configuration

Messaging needs the following additional system components:

l An e-mail server configured to redirect all incomingmessages with a specified domain to the
same folder (*).

l An SMS gateway referring to the folder mentioned above and the relatedmobile phone
connection.

The following options must be set in Administration | E-mail And Documents | E-mail Configuration to
allow the object to function:

l Outgoing Mail Server (SMTP). The IP Address of themail server.
l SMTP Port. Usually 25.
l SMS Domain Name. Themail domain used to hold the SMS messages, for example

sms.domain.com.
l SMTP Server For SMS Messaging. For example 212.120.152.148 or any valid server name

such as mail.sms.domain.com.
l Use SMS Feature. Set to Yes.
l A proper sender address. A valid e-mail address must be specified in the person profile.

The following points need to be noted:

l Themessage details (Recipients, CC, BCC, Subject, Body) are retrieved from the form
content, if the DisplayForm property is set to true.

l The properties specified in the ASP page are defaults for the first value of the entry
components of the form, unless theMode property is set to 2 (send).

l The addresses specified in the form's fields can be phone numbers or e-mail addresses
(separated by a comma or semicolon). The object automatically distinguishes themode.

l Themessages sent as SMS are truncated up to 160 characters, due to SMS format
specifications.

Developer Guide 8-79

Chapter 8

Properties

DisplayForm

Description Toggles visual/non visual mode. If themessage contains errors, the form
is displayed regardless of this parameter.

Values Boolean: True, false. Default is true.

Example The following example sends amessage without displaying the form
unless there are errors.
MailObj=CRM.GetBlock("messageblock");

MailObj.Mode=2;

MailObj.DisplayForm=false;

CRM.AddContent(MailObj.Execute());

Response.Write(CRM.GetPage());

mAddressFrom/mNameFrom

Description Sender Name and e-mail address.These properties are only used in Self
Servicemode, when the user is logged in and the name and the e-mail
address are retrieved from the current user details.

Values Any valid e-mail address.

Example Message.mAddressFrom='messagesender@domain.com';

Message.mNameFrom='George Smith';

mBody

Description The content of themessage. The body is truncated at 160 characters for
SMS messages.

Values Any text.

Example mailObj=CRM.GetBlock("messageblock");

mailObj.mBody='This is where you put the content of the message';

CRM.AddContent(mailObj.execute());

Response.Write(CRM.GetPage());

8-80 Sage CRM

Chapter 8: ASP Object Reference

mErrorMessage

Description After execute is invoked reports the detailed error string for themessage
just sent.

Values Text (read only).

Example The following example returns a value of true and displays the error
message when themessage is not sent successfully.
if(!mSentOK)

{

//if errors occurred then show the proper message

CRM.AddContent('ERROR: '+mErrorMessage);

}

else

{

CRM.AddContent('Message Sent OK'());

}

Response.Write(CRM.GetPage());

mSentOK

Description Reports the status of themessage sent after execute is invoked. It
returns a value of true when themessage has been sent successfully.

Values Boolean: True, false (read only)

Example The following example displays amessage when themessage is sent or
an error if the delivery fails.
{

if(!mSentOK)

//if errors occurred then show the proper message

CRM.AddContent('ERROR: '+mErrorMessage);

}

else

{

CRM.AddContent('Message Sent OK');

}

Response.Write(CRM.GetPage());

mShowCC/mShowBCC

Description Enables the display of carbon copy (CC) and blind carbon copy (BCC)
fields in the graphical interface.

Values Boolean: True, false. Defaults: mShowCC is true, mShowBCC is false.

Example The following example displays the CC and BCC fields.
mailObj=CRM.GetBlock("messageblock");

mailObj.mSubject='New Message';

mailObj.mBody="This is where you put the content of the message.";

mailObj.mShowCC=true;

mailObj.mShowBCC=true;

CRM.AddContent(mailObj.execute());

Response.Write(CRM.GetPage());

Developer Guide 8-81

Chapter 8

mSubject

Description The subject of themessage.

Values String: Any text.

Example mailObj=CRM.GetBlock("messageblock");

mailObj.mSubject='New Message';

CRM.AddContent(mailObj.execute());

Response.Write(CRM.GetPage());

CRMOrgGraphicBlock Object
The organizational graphic is an implementation of the Graphic Block that is used for organizational
charting. These diagrams can be drawn from data supplied to them from an ASP page or from data
stored in a table. Other parameters can also be set to describe the look of the diagram. Themost
common use of these diagrams is to display an employee hierarchy for a company. Currently, all the
parameters and data are set through the 'OrgTree' command. As with the Graphics Block, the
organizational graphic is recreated every time it is requested and can therefore be based on real time
data.
To initiate this block:

OrgGraph=CRM.GetBlock('orgchart');

Methods

OrgTree(Mode, Value)

Description Currently, all properties and data are set through the 'OrgTree' command.
It returns a string value as is required for some of the commands that may
be passed to it. Some of the commands alter the appearance while others
may be used to obtain counts on the branches in use.

Parameters Mode : WideString, Value : WideString

Example OrgGraph.OrgTree('Add',',Top Level,True');

OrgGraph.OrgTree('Add','Top Level,Child,True');

OrgGraph.OrgTree('GetLevelCount', '1');

OrgGraph.OrgTree('GetLargestLevelSize','');

OrgGraph.OrgTree('Animated','False');

OrgGraph.OrgTree ('FullBoxWidth','88');

OrgGraph.OrgTree ('FullBoxHeight','50');

OrgGraph.OrgTree('BoxWidth','40');

OrgGraph.OrgTree('BoxHeight','25');

OrgGraph.OrgTree('EntityIcon','c:\\person.bmp');

OrgGraph.OrgTree('EntityImage','c:\\back.bmp');

OrgGraph.OrgTree('BoxStyle','Square');

OrgGraph.OrgTree('LineStyle','Ray');

CRMPipelineGraphicBlock Object
The pipeline graphic is an implementation of the Graphic Block that includes extra functionality. You
use the Pipeline Graphic to create cross-sectional diagrams that can represent data from an ASP
page or data from a table. You use the parameters of this block to change the look and feel of the
pipeline.

8-82 Sage CRM

Chapter 8: ASP Object Reference

You can customize individual sections of the pipeline graphic to appear differently as the user selects
them (by clicking on them). Similar to the Graphics Block, the Pipeline graphic is recreated every time
it is requested and can therefore be based on real time data. It can also use all of the features of the
Graphics Block.
The default size of the image created by the pipeline is set at 600 pixels wide and 100 in height,
however it can be changed using the Graphics block's 'Resize' command.
To initiate this block:

MyObj=CRM.GetBlock('pipeline');

Methods

AddPipeEntry(Name, Value, Description)

Description The easiest way to create a pipeline diagram is to build it up one section
at a time using the AddPipeEntry command.

Parameters Name: Text, widestring. The name of the section of the pipe that is
shown in the Legend for the pipeline.
Value: Integer, determines the size that this particular pipeline takes.
Each section of pipe fills a percentage of the image width that is directly
determined by its value.

Description: Text, widestring. The text that appears when the user hovers
over that section of pipe.

Url: Text, widestring. TheWeb address (or ASP page) to link to should
the user click on that section of the pipe.

Example MyPipe=CRM.GetBlock('pipeline');

MyPipe.AddPipeEntry('Sold', 100,'100 items sold', 'http://

www.mydomain.com');

MyPipe.AddPipeEntry('Prospect', 40,'40 prospects', 'http://

www.yahoo.com');

CRM.AddContent(MyPipe.Execute());

Response.Write(CRM.GetPage());

Developer Guide 8-83

Chapter 8

ChooseBackGround(Value)

Description Sets the background of the pipeline graphic.

Parameters Value: Integer value for different background images. The images are
loaded by default into the CRM images directory during installation.
Default is white.
For example:

l 1= accpacblue.gif
l 2 = accpacwhite.gif
l 5 = listrow1gif
l 8 = lightpurplemarblebright.gif
l 14 = accpaccream.gif
l 15 = listrow2.gif

Example Pipe.ChooseBackGround(8);

PipelineStyle(Mode, Value)

Description You can set various parameters of the PipelineGraphic block to change
the appearance and size of individual sections of the pipeline. These
parameters include adding gradients, displaying legends and adjusting
diameters.

Parameters Mode : WideString

Example MyPipe=CRM.GetBlock('pipeline');

MyPipe.AddPipeEntry('Sold', 100,'100 items sold', 'http://

www.CRM.com');

MyPipe.AddPipeEntry('Prospect', 40,'40 prospects', 'http://

www.yahoo.com');

MyPipe.PipelineStyle('Shape','Circle');

MyPipe.PipelineStyle('UseGradient','False');

MyPipe.PipelineStyle('Animated','False');

MyPipe.PipelineStyle('Selected','Sold');

MyPipe.PipelineStyle('SelectedWidth','10');

MyPipe.PipelineStyle('SelectedHeight','10');

MyPipe.PipelineStyle('PipeWidth','40');

MyPipe.PipelineStyle('PipeHeight','60');

MyPipe.PipelineStyle('ShowLegend','True');

CRM.AddContent(MyPipe.Execute());

Response.Write(CRM.GetPage());

8-84 Sage CRM

Chapter 8: ASP Object Reference

Properties

Pipe_Summary

Description Enables you to enter HTML text that displays to the right of a pipeline
section when the section is selected. You can also use this property to
display a legend/description of what is selected.

Parameters Value: Text, HTML

Example Pipleline=CRM.GetBlock('pipeline');

Pipe=Pipleline.Selected(1);

Pipe.Pipe_Summary='<TABLE><TD CLASS=TABLEHEAD>Negotiating

Selected (70)</TD></TABLE>';

Selected

Description Sets a section of the pipeline so that you can alter the style of that section
when it is clicked on.

Parameters Value: The number of the section that you are selecting.

Example Pipeline=CRM.GetBlock('pipeline');

Pipeline.Selected(1);

CRMQuery Object
The CRMQuery Object is used to enter and execute SQL statements against a known system
database. The database can either be the system database or an external database connected to
CRM. An external databasemust bemade known to CRM before you can use the CRMQuery object
with it.
You can use the CRMQuery object to perform more powerful queries than you can with the Record
object. This object can be used to execute SQL statements that return results, for example, SELECT
statements, or statements that don't return results, for example, DELETE statements. You can run
any SQL statements, even INSERT and DROP TABLE. You use the SelectSql method to run
SELECT statements and the ExeqSql method to run functions that don't return a result (such as
DELETE).
Preceding code:

Query:=CreateQueryObj('Select * from tablename',

'databasename');

Note: The 'databasename' is an optional parameter. If it is not set, the default database
is assumed.

Developer Guide 8-85

Chapter 8

Methods

ExecSql()

Description Executes the SQL statement. You use this method to execute
statements that do not return rows, for example DELETE, INSERT,
UPDATE. You use SelectSQL to execute statements that do return rows
(SELECT statements).

Parameters None

Example Query.ExecSql();

The following example executes the SQLUPDATE statement.
var sql="UPDATE Company SET Comp_PrimaryUserID='"+AccountMgr+"'

WHERE "+" Comp_CompanyId="+Values('Comp_CompanyId');

CRM.ExecSql(sql);

Next()

Description Selects the next row or SELECT statement in the Query.

Parameters None

Example
Query.Next();

This example returns the next row in the query that displays company
identifiers and names.
Query=CRM.CreateQueryObj("Select * from company", "");

Query.SelectSql();

while (!Query.eof)

{CRM.Addcontent(Query("comp_companyid") + " = " +

Query("comp_name") + "

");

Query.Next();}

Response.Write(CRM.GetPage());

NextRecord()

Description Moves the specified query onto the next record.

Parameters None

Example Query.NextRecord();

Previous()

Description Selects the previous row or SELECT statement in the query.

Parameters None

Example Query.Previous();

8-86 Sage CRM

Chapter 8: ASP Object Reference

SelectSql()

Description Executes the SQL. You use this method to execute statements that
return rows (SELECT statements).

Parameters None

Example Query.SelectSQL();

The following example displays the company identifier and name field
from the selected SQL query until the end of the query.
Query=CRM.CreateQueryObj("Select * from company", "");

Query.SelectSql();

while (!Query.eof)

{CRM.Addcontent(Query("comp_companyid") + " = " +

Query("comp_name")+"

");

Query.NextRecord();}

Response.Write(CRM.GetPage());

Properties

Bof

Description Returns whether you are at the beginning of the Query.

Example The following example displays the company name if it exists, using the
bof property to verify that it is not just at the beginning of the file.
comp = CRM.CreateQueryObj('select * from Company where

Comp_CompanyId=12');

comp.SelectSql();

if ((!comp.eof) && (!comp.bof)) {

CRM.AddContent(comp.comp_name);}

else {CRM.AddContent('Company does not exist');}

Response.Write(CRM.GetPage());

DatabaseName

Description When you use aQuery object, the default database is the system
database. You use this function to point it to another database.

Parameters Name: String, database name.

Example The following example changes the database to which the query is
pointing.
Query=CRM.CreateQueryObj('Select * from company', 'crm');

Query.SelectSQL();

Query.DatabaseName(crm);

Developer Guide 8-87

Chapter 8

Eof

Description Returns whether or not you are at the last row of the query.

Example The following example displays the company identifiers and name fields
from the selected SQL query until the end of the query.
Query=CRM.CreateQueryObj("Select * from vCompany");

Query.SelectSql();

while (!Query.eof) {

Response.Write (Query("comp_companyid") + " = " +

Query("comp_name")+'

'); Query.NextRecord();

}

FieldValue

Description Retrieves or sets individual fields in a query.

Parameters FieldName: The name of the field that you want to retrieve.

Example You don't need to specify the FieldValue property. These two examples
are the same:
1) value=Query.FieldValue("somefield");

2) value=Query("somefield");

The following example displays the company identifier and the name field
from the selected SQL query.
Query=CRM.CreateQueryObj("Select * from company", "");

Query.SelectSql();

while (!Query.eof)

{CRM.AddContent(Query("comp_companyid") + " = " +

Query("comp_name") + "

");

Query.NextRecord();}

Response.Write(CRM.GetPage());

RecordCount

Description This property returns an integer value that is the number of records
referred to by the Query object. This function can be used on aQuery
Object or a Record Object.

Parameters None

Example The following example displays a record count of all the records in the
company table of the default database.
Query = CRM.CreateQueryObj("Select * from company");

Query.SelectSQL();

CRM.AddContent("There are " +Query.RecordCount+ " records.");

Response.Write(CRM.GetPage());

8-88 Sage CRM

Chapter 8: ASP Object Reference

SQL

Description Sets the SQL statement for this Query. The SQL statement is usually
passed in when the object is created, but you can change it using this
property. The SQL is not executed until you call one of the execute
methods, SelectSql or ExecSql.

Example This example resets the SQL SELECT statement to query the person
table instead of the company table.
Query=CRM.CreateQueryObj("Select * from company", "");

Query.SQL="Select * FROM person";

Query.SelectSql();

while (!Query.eof)

{CRM.AddContent (Query("pers_personid")+" = "

+Query("pers_lastname") +"

");

Query.NextRecord();}

Response.Write(CRM.GetPage());

CRMRecord Object
The CRMRecord Object represents records in a table. This object is an enumerator that returns all the
specified fields in a table.
The Record object contains a higher-level understanding of the columns than a query object. You use
the properties andmethods of this object to manipulate information in columns and save any edits.
You use the CRMObject's CreateRecord or FindRecordmethods to return the record that you
manipulate using the Record object. In all of the examples that follow, code (similar to the examples
below) is used to create the record object:

record=CRM.CreateRecord("cases");

record=CRM.FindRecord("cases","case_caseid=20");

Methods

FirstRecord()

Description Moves the record to point to the first record that matched the SQL passed
in when the record object was created. Note, when the record object is
created, it automatically points at the first record, so you only need to use
this if you want to reset it.

Example The following example displays companies starting with the letter 'o' and
writes out the first record.
o = CRM.FindRecord("company","comp_name like 'o%'");

while (!o.eof) {

CRM.AddContent(o.comp_name+'

');

o.NextRecord()}

o.FirstRecord();

CRM.AddContent('The first company is '+o.Comp_Name);

Response.Write(CRM.GetPage());

Developer Guide 8-89

Chapter 8

NextRecord()

Description Returns the next record (if any).

Example This example displays a list of people in the person table-first and last
names.
People = CRM.FindRecord('Person','Pers_Deleted is null');

while (!People.Eof) {

CRM.AddContent(People.Pers_FirstName+'

'+People.Pers_LastName+'

');

People.NextRecord(); }

Response.Write(CRM.GetPage());

RecordLock

Description Locks the current Record object. If the record is already locked (someone
else is using it), an error message is returned. Note that locking is usually
automatically handled by the Container blocks. The RecordLock function
should only be used when the standard container locking functionality has
been disabled (by setting the relevant Container block property
CheckLocks to false).

Parameters None: If the record is locked, outputs an error message.

Example The following example locks the record. It displays an error and places
the record in view mode if the record cannot be locked-that is, if it is
already locked by somebody else.
var r=CRM.FindRecord('company','comp_companyid=30');

CompBlock = CRM.GetBlock('CompanyBoxLong');

CompBlock.CheckLocks = false;

if (CRM.Mode == 1)

{e = r.RecordLock();

if (e != '')

{CRM.Mode = 0; // keep in view mode

CRM.AddContent(e+'

');}

}

CRM.AddContent(CompBlock.Execute(r));

Response.Write(CRM.GetPage());

8-90 Sage CRM

Chapter 8: ASP Object Reference

SaveChanges()

Description Saves any changes made to the current record, in the database. Youmust call
this method to save changes to the database. Note that SaveChanges()
refreshes the RecordObject to point back to the beginning of the record set
selected. Therefore SaveChanges cannot be used on a RecordObject where
the sameRecordObject is being used in the condition in a while loop. See
Example 2 below for workaround for using SaveChanges() in a loop.

Example Record.SaveChanges();

This example adds and saves a new record to the company table and displays
in a list.
Comp = CRM.CreateRecord('company');

Comp.item('comp_Name') = '4D Communications International';

Comp.SaveChanges();

block=CRM.GetBlock("companygrid");

CRM.AddContent(block.execute(''));

Response.Write(CRM.GetPage());

Example 2 var companies = CRM.FindRecord("company","comp_name like 'Gate%'");

while (!companies.eof)

{

Response.Write(companies('comp_name')+'')

Response.Flush();

var company = CRM.FindRecord('company', 'comp_companyid=' +

companies.comp_companyid);

company.comp_type = 'Member';

company.SaveChanges();

companies.NextRecord();

}

Response.Write('End');

SaveChangesNoTLS()

Description Saves any changes made to the current record in the database, but does
not trigger any Table Level scripts that exist for the table that is being
updated.

Example Record.SaveChangesNoTLS();

This example adds and saves a new record to the company table but
does not call the company table level script.
Comp = CRM.CreateRecord('company');

Comp.item('comp_Name') = '4D Communications International';

Comp.SaveChangesNoTLS();

block=CRM.GetBlock("companygrid");

CRM.AddContent(block.execute(''));

Response.Write(CRM.GetPage());

Developer Guide 8-91

Chapter 8

SetWorkflowInfo(vWorkflowName, vWorkflowState)

Description Allows you to save a new record into a workflow tree. This function works
when the Record object is a result of a CreateRecord call. Note that this
function can also be used when the Record object is being used as the
ArgObj of an EntryGroup block, or passed into the Execute function of an
EntryGroup block.

Parameters vWorkflowName - This is the description of the workflow into which you
want the record to be saved, that is, the value that was entered as the
workflow description when the workflow was created.
vWorkflowState - This is the name of the state in the relevant workflow at
which the record is to be saved, that is, the State Name value entered
when the state is created.

Example The following example creates a new opportunity andmakes it part of the
'SalesOpportunityWorkflow' workflow in the state 'In Progress'. When
the opportunity is viewed, the valid actions for that state are then
available.
NewOppo = CRM.CreateRecord("Opportunity");

NewOppo.SetWorkflowInfo("SalesOpportunity Workflow","Lead");

NewOppo.Item ("oppo_description") = "My new Oppo";

NewOppo.SaveChanges();

Properties

DeleteRecord

Description This property is Boolean which flags a record for deletion. If this property is set
to True, then when the SaveChanges method is called, the record is deleted.
This is known as a soft delete.

Deletes are not cascaded to all child records. This means that theremay be
some orphaned records.

To avoid this, run a version of this query using either the QueryObject or the
RecordObject.

select bord_name, bord_companyupdatefieldname from custom_tables where

bord_companyupdatefieldname is not null

This will help you identify the child/orphaned records.

Values Boolean: True or false.

Example DeleteRecord=true;

The following example deletes a record in the company table.
Comp = CRM.FindRecord('company', "comp_name='Eurolandia'");

Comp.DeleteRecord=true;

Comp.SaveChanges();

8-92 Sage CRM

Chapter 8: ASP Object Reference

Eof

Description Tests to see if a loop has reached the last record. It returns true if you are
at the last record or if there are no records. If there is only one record this
becomes true after one call to NextRecord.

Example This example retrieves the next record if the last record has not been
retrieved
(eof).

while (!record.eof) {

record.NextRecord();}

IdField

Description Returns the name of the identification (primary key) field for the current
table of the record object. This is normally the first fieldname in a table.

Example The following example returns the Id field of the company called 'Design
Right Inc.'.
Comp = CRM.FindRecord('company', "comp_name='Design Right

Inc.'");

var idname=Comp.IdField;

CRM.AddContent(Comp.item(idname));

Response.Write(CRM.GetPage());

Item

Description Returns or sets the given fieldname.

Parameters FieldName: The name of the field you want to retrieve or add to the
column in the table.

Example You are not required to specify the item property for record objects.
These two examples are the same:
record.Item("item");

and
record("item");

The following example creates a new record in the company table, names
the company '3D Communications International', and displays it in a
company list.
Comp = CRM.CreateRecord('company');

Comp.item('comp_Name') = '3D Communications International';

Comp.SaveChanges();

block=CRM.GetBlock("companygrid");

CRM.AddContent(block.execute(''));

Response.Write(CRM.GetPage());

Developer Guide 8-93

Chapter 8

ItemAsString

Description Returns the field value as a string. The Item property returns the item in
its native format. The ItemAsString property uses metadata to convert
the item to a string.

Parameters FieldName: The field you want returned.

Example The following example finds and displays the name of the user assigned
to a case from their userid.
Case = CRM.FindRecord('cases', "case_assigneduserid=5");

CRM.AddContent(Case.itemasstring("case_assigneduserid"));

Response.Write(CRM.GetPage());

OrderBy

Description This is a string that makes up the fieldname or names under which the
record object is ordered. The value contained in OrderBy is used to build
up an SQL statement for the record. This means that you can use
parameters such as 'ASC' or 'DESC' for ascending and descending
orders in the statement.

Example The following example orders a record in descending order by people first
name, then last name.
People = CRM.FindRecord('Person','Pers_Deleted is null');

People.OrderBy = 'Pers_LastName, Pers_FirstName';

while (!People.Eof) {

CRM.AddContent(People.Pers_FirstName+'

'+People.Pers_LastName+'

');

People.NextRecord();

Response.Write(CRM.GetPage());

}

RecordCount

Description This property returns an integer value, that is the number of records
referred to by the object. This function can be used on a Record Object or
a Query Object.

Example The following example displays the number of current system users.
Users = CRM.FindRecord('users','');

CRM.AddContent("There are " +Users.RecordCount+ " system

users.");

Response.Write(CRM.GetPage());

8-94 Sage CRM

Chapter 8: ASP Object Reference

RecordID

Description Returns the identifier for the current record. A unique identifier is created
automatically for each record when the record is created.

Example To find the identifier of the current record
Response.Write(Record.RecordID);

The following example displays the name and identifier of the current
record.
Record=CRM.FindRecord("company","");

CRM.AddContent(Record("comp_name"));

CRM.AddContent(Record.RecordID);

Response.Write(CRM.GetPage());

CRMSelfService Object
The CRMSelfService object is similar to the CRMObject, but allows access to the CRM database,
and tomany methods of the CRM object, from outside the CRM application. You could use it in a web
application to allow visitors to your website have access to, and interaction with, some aspects of
your CRM system. For example, visitors to your website might be allowed to log cases, or to update
their addresses or other contact information directly. These visitors do not have to be CRMUsers,
but may be "People" in your CRM database.
There is a sample Self Service application that can be installed as part of CRM setup (you CRM
license key must include Self Service). More details on the Self Service sample application can be
found in the Self Service Guide.
Although Self Service is a COM based API like themain ASP API for building application extensions
it is actually separate and the usage of the blocks can be quite different. Because the Self Service
environment lacks a 'logon' that generates a CRM SID (Session ID) or context you can't use any API
objects/methods that rely on this for building URLs (for example eWare.Button(), eWare.GetTabs()
and eWare.URL() cannot be used).
For example, this will result in an error:

CRM.AddContent(myBlock.Execute(Arg));

Response.Write(CRM.GetPage())

Response.Write(myBlock.Execute(Arg));

Self Service Method and Property Differences
The following table lists methods and properties that are unique to, or have special application in, the
Self Service object:

Methods and properties that are unique to, or have special application in, the Self Service object:

l Init(QueryString, ContentString, Cookie) (page 8-97)
l EndSSSession(QueryString, ContentString, Cookie) (page 8-97)
l Authenticated (page 8-98)
l AuthenticationError (page 8-98)
l VisitorInfo (page 8-99)
l RowsPerScreen (page 8-76) (see note below)

The following CRM objects andmethods are not available in Self Service:

Developer Guide 8-95

Chapter 8

l AddContent(Content) (page 8-17)
l GetCustomEntityTopFrame(EntityName) (page 8-20)
l GetPage() (page 8-20)
l SetContext(EntityName, EntityID) (page 8-21)
l FastLogon (page 8-27)
l Button (page 8-23)
l GetContextInfo(Context, FieldName) (page 8-24)
l GetTabs(TabGroup) (page 8-25)
l Logon(LogonId, Password) (page 8-26)
l Url(Action) (page 8-26)
l Email Object (page 8-12)
l AddressList Object (page 8-9)
l MailAddress Object (page 8-15)
l AttachmentList Object (page 8-11)
l Attachment Object (page 8-10)
l MsgHandler Object (page 8-15)
l CRMGraphicBlock Object (page 8-59)
l CRMChartGraphicBlock Object (page 8-33)
l CRMOrgGraphicBlock Object (page 8-82)
l CRMPipelineGraphicBlock Object (page 8-82)

RowsPerScreen Property in Self Service
When using a CRMListBlock Object (page 8-72) on your Self Service page, you can use the
RowsPerScreen property to set the number of rows that will appear in the ListBlock grid. Unlike
normal CRM ListBlocks, the RowsPerScreen property of Self Service ListBlocks is not affected by
any user's Grid Size preference.

This example creates a list of cases related to the current Self Service Visitor, and sets the row
count to 22:

<%

myListBlock=CRM.GetBlock("sscaselist");

myListBlock.RowsPerScreen = 22;

Response.Write(myListBlock.Execute("case_primarypersonid="+CRM.VisitorInfo('Pers_

PersonID')));

%>

Note on Instantiating the CRMSelfService Object
For legacy reasons, the CRMSelfService Object is instantiated as:

CRM = Server.CreateObject("eWare.eWareSelfService");

Note that in the Self Service demo site that ships with CRM, the CRMSelfService Object is
instantiated as:

eWare = Server.CreateObject("eWare.eWareSelfService");

And so, in the demo site, the code will reference the object as eWare, for example:

record=eWare.FindRecord("cases","case_caseid="+caseid);

8-96 Sage CRM

Chapter 8: ASP Object Reference

Methods

EndSSSession(QueryString, ContentString, Cookie)

Description This method ends the Self Service session and resets the CRM cookies at the
end of the session.

Parameters QueryString: Pass in the current page's querystring, Request.Querystring.
ContentString: Pass in the current page's form string, Request.Form.
Cookie: Pass in a reference to the CRM cookies
object,Request.Cookies("CRM").

Example The following example ends the Self Service session, requests the CRM
cookies, and displays a goodbyemessage to the user.
CRM.EndSSSession(Request.Querystring, Request.Form,

Request.Cookies("CRM"));

Response.Write("Goodbye "+CRM.VisitorInfo("visi_FirstName")+"

"+CRM.VisitorInfo("visi_LastName"));

Init(QueryString, ContentString, Cookie)

Description The CRM SelfService object must be initialized and connected to the
database before it can be used. The Init method initializes the Self
Service session and CRM cookies. If you have installed the CRM Self
Service Demo site, you will see that the Init method is called in the
ewaress.js file. This file can be included at the top of each of your Self
Service ASP pages, for example:
<!-- #include file ="ewaress.js" -->

Note that there is also an Init method for normal CRM
sessions, but it is internal to CRM.

Parameters QueryString: The name of the query string.
ContentString: The name of the content string, usually a form.
Cookie: The name of the initial CRM cookies.

Example The following example initializes the CRM Self Service object and CRM
cookies.
CRM = Server.CreateObject("eWare.eWareSelfService");

CRM.init(Request.Querystring,Request.Form,Request.Cookies("CRM"));

Response.Expires=-1;

Developer Guide 8-97

Chapter 8

Properties

Authenticated

Description Returns true if the current user is authenticated.

Parameters None

Example if (CRM.Authenticated)

{

//do some action only for authenticated users

}

The following example enables a user who is authenticated to access to a
membermenu, and users that are not authenticated to be taken back to
an index page.

if (CRM.Authenticated)

{

//This could be any function

getmembermenu();

}

else

{

Response.Redirect("index.asp");

}

AuthenticationError

Description If there is an authentication error, the text is given by this property. The
error displayed is the SQL reason or IIS reason for the error.

Parameters None

Example if (CRM.Authenticated)

{

//perform action for authenticated users

}

else

{

Response.Write('You are not a valid user' +

CRM.AuthenticationError);

}

8-98 Sage CRM

Chapter 8: ASP Object Reference

VisitorInfo

Description Returns or sets the value associated with a given key for the current
authenticated visitor. The key can be either a column on the visitor table,
beginning with 'Visi', or any text.

Parameters Key: Either a column in the visitor table or a string variable.

Example CRM.VisitorInfo("Visi_FirstName") = firstname;

CRM.VisitorInfo("haircolor") = "blue";

The following example allows access to any visitor user who has been
authenticated and has filled in the notification criteria.

if((CRM.Authenticated)&&(CRM.VisitorInfo("Visi_

NotificationCriteria")!=""))

{

//This could be any function

getmembermenu();

};

CRMTargetListField Object
Fields to be included in the Target List. The actual field names in the CRM database need to be
specified.
Note that in version 6.0 and above, target lists are now referred to as "groups." However, to ensure
that legacy code continues to work with new installations, the older term, "target lists," is maintained
in the API terminology.

Properties

DataField

Description The name of the field to be displayed on the Target Lis

Value String.

Example See CRMTargetLists Object (page 8-99).

CRMTargetLists Object
Used for creating and saving a Target List in conjunction with CRM TargetListFields and CRM
TargetListField. The target list must be based on a Company, Person, or Lead.
Note: In release of version 6.0 and above, target lists are referred to as "groups." However, to ensure
that legacy code continues to work with new installations, the older term, "target lists", is maintained
in the API terminology.

Developer Guide 8-99

Chapter 8

Methods

Save()

Description Saves the target list. If the TargetListID property was set to zero, then a
new target list is saved, otherwise the target list specified by the
TargetListID property is updated.

Parameters n/a

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Include(ATargetID)

Description Includes a target in the Target List.

Parameters ATargetID. Integer.

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Exclude(ATargetID)

Description Excludes a target from the Target List.

Parameters ATargetID. Integer.

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Retrieve()

Description Retrieves a target from the Target List.

Parameters n/a

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Properties

TargetListID

Description The identifier of the target list.

Value Integer.

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

8-100 Sage CRM

Chapter 8: ASP Object Reference

Category

Description The category of the target list.

Value String.

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Name

Description The name of the target list.

Value String

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Description

Description The description of the target list.

Value String

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

ViewName

Description The view used by the target list.

Value String

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Fields

Description Link to list of display fields. Read-only.

Value CRMTargetListFields

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

OrderByFields

Description Link to list of order by fields. Read-only.

Value CRMTargetListFields

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Developer Guide 8-101

Chapter 8

WhereClause

Description TheWhere Clause used to filter the list of targets. Must set this if creating
or modifying a target list.

Value String

Example See Example: Creating and Saving a Target List (page 8-102) and
Example: Retrieving a Target List (page 8-103).

Example: Creating and Saving a Target List

// Shows an example of creating and saving a target list

// All steps are compulsory and should be in this order

<!-- #include file ="sagecrm.js" -->

<%

TargetBlock = CRM.TargetLists; // Get the TargetBlock COM Object from the CRM base

object

TargetBlock.TargetListID = 0; // Set the id to zero, to indicate a new target list

TargetBlock.Category = "Person"; // Set the category. Other valid categories are

Company and Lead

TargetBlock.Name = "COM List 1"; // Set the name of the target list, should be

unique

TargetBlock.ViewName = "vTargetListPerson"; // Set the view to be used

TargetBlock.WhereClause = "Addr_City = N'London'"; // If required, then specify a

where clause.

// You must specify at least one display field. All fields must be returned by the

view.

TargetField = TargetBlock.Fields.New(); // Create a new display field

TargetField.DataField = "Comp_Name"; // Specify its database fieldname

TargetField = TargetBlock.Fields.New(); // Create a second display name, optional

TargetField.DataField = "Pers_LastName";

TargetField = TargetBlock.Fields.New(); // Create a third display field, optional

TargetField.DataField = "Pers_FirstName";

// Add more fields as desired. You may add order by fields to sort the target list

TargetField = TargetBlock.OrderByFields.New(); // Create a new order by field

TargetField.DataField = "Pers_LastName"; // Specify its database fieldname

TargetQuery = TargetBlock.Retrieve(); // Create and return the target list based

on the above settings

// This demonstrates cycling through the returned targets, and setting every tenth

target to be excluded

while (!TargetQuery.EOF)

{

I = 1;

while ((!TargetQuery.EOF) && (I < 10))

{

TargetQuery.Next();

I++;

}

if (!TargetQuery.EOF)

{

j = TargetQuery.FieldValue("Pers_PersonID");

TargetBlock.Exclude(j);

}

}

// For the moment, we always return to the Actions page whether successful or not.

// 580 is the action number to go back to the target list browser page

// 585 is the action number to go back to the target list actions page

if (TargetBlock.Save()) // Save the target list

8-102 Sage CRM

Chapter 8: ASP Object Reference

{

Response.Redirect(CRM.URL(580));

}

else

{

Response.Redirect(CRM.URL(580));

}

%>

Example: Retrieving a Target List

// This shows an example of retrieving a target list,cycling through the targets

// and marking any excluded targets as being included

<!-- #include file ="sagecrm.js" -->

<%

TargetBlock = CRM.TargetLists;

// Get the TargetBlock COM Object from the CRM base object

TargetBlock.TargetListID = Request.QueryString("Key25");

// Set the id that we want to look for

TargetQuery = TargetBlock.Retrieve();

// Retrieve the target list

while (!TargetQuery.EOF)

{

if (TargetQuery.FieldValue("DData_ShortStr") == "Excluded") // If this target is

excluded, then

{

TargetBlock.Include(TargetQuery.FieldValue("Pers_PersonID")); // Include this

target

// This particular target list is a Person target list

// If a Company target list, then use the Comp_CompanyID field

// If a Lead target list, then use the Lead_LeadID field

}

TargetQuery.Next(); // Move to next target

}

// For the moment, we always return to the Actions page whether successful or not.

// 580 is the action number to go back to the target list browser page

// 585 is the action number to go back to the target list actions page

if (TargetBlock.Save())

{ // Save the target list

Response.Redirect(CRM.URL(585));

}

else

{

Response.Redirect(CRM.URL(585));

}

%>

CRMTargetListFields Object
This Object is a container for a list of CRMTargetListField Objects. There are two instances of this
object, one for the display fields, and the other for the order fields. Note that in version 6.0 and above,
target lists are now referred to as "groups."
However, to ensure that legacy code continues to work with new installations, the older term, "target
lists," is maintained in the API terminology.

Developer Guide 8-103

Chapter 8

Methods

New(CRMTargetListField)

Description Creates and returns a new field.

Value CRMTargetListField

Example See CRMTargetLists Object (page 8-99).

Delete(Index)

Description Deletes the field specified by the passed index.

Value Index.

Example See the CRMTargetLists Object (page 8-99) page for an example.

Properties

Parent

Description A pointer to the CRMTargetLists object.

Value Read only. Returns a CRMTargetLists object.

Example See CRMTargetLists Object (page 8-99).

Count

Description The new of fields in the list.

Value Integer (read only)

Example See the CRMTargetLists Object (page 8-99) page for an example.

Item

Description Returns the field specified by the Index. The index is an integer.

Value Read only. Returns a CRMTargetLists object.

Example See CRMTargetLists Object (page 8-99).

8-104 Sage CRM

Chapter 9: Web Services

In this chapter you will learn how to:

l Describe CRMWeb Services.
l Discuss how to set upWeb Services.
l Get an overview of objects and functions.
l List Web Services functions.
l List Web Services objects.
l Describe the CRMRecordType object.
l Get an overview of selection fields inWeb Services.
l UnderstandWeb Services examples.
l Create SOAP requests.

Introduction to Web Services

Sage CRM's web service API (application programming interface) enables developers tomanipulate
CRM records remotely with SOAP (Simple Object Access Protocol) over HTTP using XML
(Extensible Markup Language). It is possible to access a CRM server or a hosted system from a
specified client machine (typically another server) in order to read, create, update, or delete records
for each exposed entity, for example, Companies, People, Opportunities, Cases, Quotes andOrders.

Please refer to List of Web Services Objects (page 9-7) for informationmore details on inserting and
updating Quote andOrder Item fields.
Themain steps involved in communicating with the Sage CRMWeb Services are as follows:

1. TheWSDL (Web Service Description Language) is generated on the CRM server.
2. The user then accesses theWSDL file from the client and prepares the request.
3. The client machine passes the request with its parameters to theWeb Service.
4. The web service processes the request and sends a response to the client.
5. The client receives the response synchronously, and it processes the data returned or it deals

with the error.

General Overview of Web Service Technology

WebServices represents a standardizedmethod for integratingWeb-based applications using XML,
SOAP, andWSDL via an Internet protocol backbone. Web service components work as follows:

l XML tags the data.
l SOAP transfers the data. For a detailed account of SOAP, please refer to

http://www.w3.org/TR/SOAP.
l WSDL describes the available services.

The technology allows organizations to exchange data without in-depth knowledge of each other's IT
systems behind the firewall. It does not provide users with a GUI, which is the case with traditional
client/server models. Instead, Web Services share business logic, data, and processes through a
programmatic interface across a network. Developers can add the web service to a GUI, such as a
Web page or an executable program, to provide users with the required functionality.

Developer Guide 9-1

http://www.w3.org/TR/SOAP

Chapter 9

The technology makes it possible for different applications from different sources to communicate
with each other without time-consuming custom coding. Due to the fact that all communication is in
XML, Web Services do not limit the user to any one programming language.

CRM Web Services Capabilities

In Sage CRM, the ability to manipulate records remotely affords the following capabilities:

l Changing Data. The ability to add, update and delete records in the CRM database.
l Integrate with third-party applications. Access to the Sage CRMWeb Services API enables

you to integrate third-party applications used within your organization, for example Accounting
packages or ERP (Enterprise Resource Planning) systems, with the Sage CRM server or
hosted system.

l Hosted Environments. As well as manipulating records on a standard CRM server, Sage
CRMWeb Services is compatible with a hosted environment. Consequently hosted
customers can leverage the technology and its capabilities.

Setting Up CRMWeb Services

Prerequisites

To set upWeb Services, you will need to have the following installed on the server:

l CRMwith a standard license key
l MSXML 4 Service Pack 2 (can be downloaded fromMicrosoft website)

All up-to-date development environments that are compatible with Soap 1.1 are compatible with Sage
CRMWeb Services. Supported environments includeMicrosoft Visual Studio 2003 and later (C#, J#,
VB.NET) andMicrosoft Visual C# 2005 Express Edition.

Steps for Working with Web Services

The following steps are involved in working withWeb Services:

1. Setting up aWeb Services user on the server.
2. SpecifyingWeb Services configuration settings.
3. Accessing theWSDL file.
4. Preparing the request and submitting it toWeb Services.
5. Handling the response—returned values or error message.

Steps 1 to 2 are described below. For information on preparing the request and handling the response
seeObjects and Functions Overview (page 9-5) and theWeb Services Examples.

Web Services User Setup

BeforeWeb Services can be accessed, a user account needs to be set up forWeb Services on the
server.
To set up a user forWeb Services:

1. Select Administration |Users |Users and find the user who you want to be able to access
Web Services.

2. Select the hypertext link for the user and select theChange action button.
3. Scroll down to the Security Profile panel, set theAllow Web Service Access field to True.
4. Select theSave button.

9-2 Sage CRM

Chapter 9: Web Services

Note: Only one web service user can log on with the same ID at any given time. If a user
tries to log on as another application, an error will be displayed informing the user that
they should first log out. However, it is possible to log on to the desktop or from a device
with the same ID while a web service application is running.

Note: The Field Level Security feature affects which fields can be accessed or updated
using web servicemethods. So, for example, if a user is denied read access to a field by
field level security, methods called by a web service session using that same user's
login details cannot return, update, or delete that field's values. For more information on
Field Level Security, refer to the System Administrator Guide.

Specifying Web Service Configuration Settings

To access web service configuration settings select Administration | System |Web Services.
The table below explains the fields on theWeb Services settings page.

Field Description

Maximum
Number
Of
Records
To Return

Themaximum number of records you want Web Services to be able to return at one
time. This is used in conjunction with the query and queryrecordmethods. The
number you enter here is the number of records that will be returned in any one batch
in response to a query. As each batch is returned, you will be prompted to call the
next batch, until all of the records matching the query have been returned. If this field
is set to 0, all records matching the query will be returned in a single batch.

Maximum
Size Of
Request

Themaximum number of characters you want users to be able to send toWeb
Services.

Make
WSDL
Available
To All

When set to Yes, theWSDL file can be viewed by anyone from:
http://[CRMservername]/[CRMinstallname]/eWare.dll/webservice/webservice.wsdl
Users will not need to be logged in to view the file. It is accessible to anyone. you
can find the URL at which to view theWSDL file by going toMain Menu |System
Help |Account Update |Web Service Connection String.

Enable
Web
Services

Set to Yes to enable theWeb Services functionality. Set to No to disableWeb
Services. To enable or disableWeb Services for an individual Table or Entity go to
Administration |Customization | [Entity/Table Name] |External Access and set
theWeb Services field to Yes to enable or No to disable.

Dropdown
Fields As
Strings In
WSDL
File

Default is Yes. Drop down fields are displayed in theWSDL as enumerated types,
for example comp_status as an enumeration with the drop down values in it. Please
refer to Objects and Functions for more details.When set to Yes, makes the
enumerated types "Strings". This is the recommended setting. This means that, for
example, within Company the field comp_status now has a type of "String".

Send And
Return All
Dates
And
Times In

When this is selected, all dates coming from the server will be set to universal time.
Also, all dates coming to the web server will be offset from universal time. This is
primarily important for migrations to the hosting service from different time zones.

Developer Guide 9-3

Chapter 9

Field Description

Universal
Times

Accept
Web
Request
From IP
Address

Specify the unique IP address that you want theWSDL file to be accessible from.
When you do this, the "MakeWeb Services Available To All" field should be set to
No.

Force
Web
Service
LogOn

If the connection between the web service client and the service is unexpectedly
broken, that client remains logged onto the server hosting the service. This means
that a new instance of the client will be blocked from logging on to the server.
However, if you set the "ForceWebservice LogOn" setting to Yes, the old instance
of the client is automatically logged out when a new instance attempts to log on. By
forcing new log ons, this field prevents users from being "locked out" of a web
service following a failed connection or unsuccessful log out.

Recommended Configuration Settings

These are the recommended settings to allow your client to access theWeb Service during
development:

1. Set theEnable Web Services field toYes.
2. Select Yes from theMake WSDL To All field.
3. Set the Force Webservice Log On field toYes.

After you have finished testing the web service client, it is recommended that you switch the
MakeWSDL To All setting back toNo to bolster security.

Accessing the WSDL File

As is the case with typical SOAPWeb Services, CRM provides aWeb Services description
language file called aWSDL file.
To access this file from the client application, open the CRMWebService.WSDL file at your install
address. For example:
http://CRMservername/CRMinstallname/eWare.dll/webservice/webservice.wsdl
On SageCRM.com, you can find the URL to view theWSDL file by going toMain Menu |System
Help |Account Update |Web Service Connection String. The URL will look something like this:
https://[region].sagecrm.com/[username1234]/eware.dll/webservices/CRMwebservice.wsdl

The CRMWSDL file describes all the APIs that CRM exposes, as well all the XML types that the
APIs expect. The file also describes the server and location where those specific services can be
found. Once the client has read and parsed theWSDL file, it can call the APIs in the sameway as
any typical function call. Since this data is passed and returned as XML, data can be easily
interpreted andmanipulated by the client.
For example, if you are usingMicrosoft Visual Studio to create a client application, your Visual Studio
project should contain aWebReference to e.g.
http://CRM
servername
/
CRMinstallname

9-4 Sage CRM

Chapter 9: Web Services

/eWare.dll/webservice/webservice.wsdl
https://[region].sagecrm.com/[username1234]/eware.dll/webservices/CRMwebservice.wsdl.
When you add the reference in Visual Studio, themain pane lists themethods available from the web
service.
If you name the serviceCRMWebServices then a new folder called CRMWebServices, containing
the files webservice.discomap and webservice.wsdl, is added to your project. The "web service
proxy"—aC# version of the wsdl file that handles the dispatch of data in SOAP format to the web
service—is created automatically.

Note: In Visual Studio 2008, to add aWebReference youmust select Add Service
Reference |Advanced |Add Web Reference.

Objects and Functions Overview

Manipulating Records

Before you start working with CRMWeb Services, you need to be familiar with all of the Functions
that you can invoke tomanipulate records, as well as the Objects (on which the functions are
invoked) that are exposed in the API.

Functions

Functions are actions invoked from the client machine to perform certain tasks, such as adding,
updating, or deleting information, on the server. Sage CRM functions are synchronous requests, and
they are committed automatically. Once committed, Sage CRMWeb Services handles the request
and returns a response. The client application then handles the response accordingly.

Note: All inserts should typically be performed on an entity basis. However, you can
update a company (or person) along with address, phone, and e-mail information. This is
to facilitate integration. In many systems, a single contact record represents company,
person, phone, e-mail, and address information.

See List of Web Services Functions (page 9-5) for a full list.

Objects

Objects are programmatic representations of data in the system. In Sage CRM, Objects represent
main entities such as companies and people, as well as secondary entities such as addresses and
products. Data is manipulated when the web service API interacts with Object properties, which
represent fields in the entities.

See List of Web Services Objects (page 9-7) for a full list, and see also The CRMRecordTypeObject
(page 9-10) and Selection Fields inWeb Services (page 9-11).

List of Web Services Functions

All of the following Objects exposed are defined in theWSDL file.

Function Description

logon Logs onto the server and begins a session.

logoff Logs off the server and terminates the session.

query Executes a query on a specified Object based on a where clause

Developer Guide 9-5

Chapter 9

Function Description

and returns a record or record set that satisfies the query.

Returns results in batches (the size of which is set in the
Maximum Number Of Records To Return field at
Administration |System |Web Services).

Each batch is accompanied by a flag calledMore. If More is True,
then there aremore records waiting on the server for that query.
Call Next to get the next batch of data. If anything other than Next
is called, the query is closed.

next Will return the next batch of records matching a query. Each batch
is accompanied by a flag calledMore. While More is True, you
can continue to call Next until all batches have been returned (i.e.
until More is False).

queryentity Returns a record if you supply anObject (for example Company)
and an id. For example, queryentity(company, 42)

queryid Returns an object of type aisid (see List of Web Services Objects
(page 9-7)). Query the database with aWhere clause, and a date
and a number of IDs are returned, along with a series of flags on
each to denote whether that record was created, updated or
deleted since that date. This is very useful for data
synchronization.

queryidnodate Returns an object of type aisid (see List of Web Services Objects
(page 9-7)). Query the database with aWhere clause. This is
useful where you need, for example, a set of company IDs but you
do not want the overhead of getting all of the company data.

getmetadata When you pass in a table name, this returns a list of CRM field
types to providemetadata (for example fieldname, type) about the
requested table.

getdropdownvalues When you pass in a table, this returns the list of the drop-down
fields in that table and the list of values that CRM expects for that
field. This is important because CRM expects a given set of
values for drop-down fields, so you need to be able to get these
values programmatically.

add Adds records or lists of records to a specified Object (for example
Company). For example, add("company", NewCompany1, New
Company2, New Company3).

addresource Adds a user as a resource. This user is not a fully enabled user.
The functionality exists purely to facilitate datamigration.

update Updates records or lists of records for a specified Object, for
example Company.

altercolumnwidth Used to resize a columnwidth to ensure compatibility with third-
party databases, for example ACT!.

9-6 Sage CRM

Chapter 9: Web Services

Function Description

delete Deleted records or lists of records for a specified Object, for
example Company.

Note that you cannot delete records from the
following tables, as they contain historical data:
newproduct, uomfamily, productfamily, pricing,
pricinglist.

addrecord Same as the add function except it has a different signature and it
uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 9-10).

queryrecord Same as the query function except it has a different signature and
it uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 9-10).

nextqueryrecord Will return the next batch of records matching a queryrecord. Each
batch is accompanied by a flag calledMore. While More is True,
you can continue to call Next until all batches have been returned
(i.e. until More is False).

updaterecord Same as the update function except it has a different signature
and it uses the lists of fields in the crmrecord type. See The CRM
RecordTypeObject (page 9-10).

getallmetadata Returns a list of fields associated with all tables along with some
type information.

getversionstring Returns the version of CRM. For example, Version 6.2.

List of Web Services Objects

The following Objects are representative of CRM entities (main and secondary). If any custom
entities are added to the CRM system, these entities are also available. Due to the fact that the
WSDL is generated dynamically, any customizations made to the system—such as adding a new
entity—are picked up each time theWSDL is refreshed at the client side.

Developer Guide 9-7

Chapter 9

Abstract Objects

Object Name Description

ewarebase
abstract

This is an abstract declaration from which all of the other CRM objects
inherit.

idbase
abstract

This is an abstract declaration from which all ID types inherit.

ewarebaselist This represents a list of the abstract objects above.

crmrecordtype An enumeration that represents the types of a CRM field, i.e. string,
datetime, integer, decimal.

The valuemultiselectfield denotes a nested array of strings that
represent the values of amulti-select field. The last option is
crmrecord. This denotes a field type that contains other fields.See The
CRMRecordTypeObject (page 9-10) for more.

crmrecord Contains an entity name and a list of objects of type recordfield that
represent one record in the CRM database.

aisid Contains the ID of the record, the created and updated date, and a flag
to say whether that record was added,updated or deleted since the
token that was passed to queryid

multiselectfield This type represents amulti select field from CRM. It contains a field
name and an array of strings representing the values of the field in
CRM. Note that these values are translations, as with the other fields.

recordfield This represents a field in a database record. It has a name value and a
type of crmrecordtype. It can also represent a nested structure. For
example, the name of the recordfield within a company crmrecord
could be person. The type would be crmrecord and the record property
would contain a list of crmrecords – one for each person in the
company.

9-8 Sage CRM

Chapter 9: Web Services

Standard Objects

Object Name Description

company This Object represents the Company entity in CRM.

person This Object represents the Person entity in CRM.

lead This Object represents the Lead entity in CRM.

communication This Object represents the Communication entity in CRM.

opportunity This Object represents the Opportunity entity in CRM.

cases This Object represents the Cases entity in CRM.

users This Object represents the Users entity in CRM.

quotes This Object represents the Quotes entity in CRM.

orders This Object represents the Orders entity in CRM.

quoteitem This Object represents the quote lineitems entity in CRM.

orderitem This Object represents the order lineitems entity in CRM.

opportunityitem This Object represents the Opportunity Item entity in CRM.

currency This Object represents the Currency entity in CRM.

address This Object represents the Address entity in CRM.

phone This Object represents the Phone entity in CRM.

email This Object represents the Email entity in CRM.

newproduct This Object represents the New Product entity in CRM.

uom This Object represents the Unit of Measure entity in CRM.

uomfamily This Object represents the Unit of Measure Family entity in CRM.

pricing This Object represents the Pricing entity in CRM.

pricinglist This Object represents the Pricing List entity in CRM.

productfamily This Object represents the Product Family entity in CRM.

Inserting and Updating Quote and Order Items

When inserting and updating fields for quote and order items, note that different line item types require
certain fields. The web service will create an exception if they are not found.

When inserting a new standard line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l productid

Developer Guide 9-9

Chapter 9

l uomid
l quantity
l quotedprice

When inserting a new free text line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l description
l quantity
l quotedprice

When inserting a new comment line item, the following fields are required:

l orderquoteid
l opportunityid
l lineitemtype (either ‘i’, ‘f’ or ‘c’)
l description

When updating a standard line item, the following fields require a value:

l quantity
l quotedprice
l uomid

When updating a free text line item, the following fields require a value:

l description
l quantity

When updating a comment line item, the following fields require a value:

l description
The following two fields are can not be updated, and will create an exception:

l linetype
l orderquoteid

In addition, certain fields are calculated or overridden by CRM in the web service code, the values
that the user passes into them will be ignored. These fields are:

l quotedpricetotal
l listprice
l discount
l discountsum

The CRM RecordType Object

The crmrecordtype object (with its associated add, update, and delete functions) provides a dynamic
and flexible programming environment. Instead of querying an entity (for example, a company) and
getting back a strongly typed (company) sobject, using the flexibility afforded by the crmrecordtype

9-10 Sage CRM

Chapter 9: Web Services

object, it is possible to query an entity and get back a list of fields that you can iterate through. This
means that it is possible to specify which fields you want to get back in your query.

The ability to iterate through records provides programmers with a powerful and flexible interface. It
allows for the dynamic addition of fields to the web services entities, and it removes the need for
strongly typed objects in client applications. Code samples should be followed closely when
performing these tasks.
The following is a query example that specifies a field list and an entity name, a where clause and an
order by. Note that if you enter an * or leave the field list blank you will get all of the fields back.

Please refer to Developer Help files for code sample.

Private static void CallQueryRecordOnCompanyEntity()

{

String companyid = ReadUserInput("Please enter a company name: ");

Queryrecordresult aresult = Binding.queryrecord("comp_companyid,address","comp_

name='compo1'","company","comp_companyid");

}

Selection Fields in Web Services

If you have drop-down fields as strings, these fields will not appear in theWSDL. As strings are the
default option, these fields will not appear in a standard setup.

The tables below list the CRM selection fields. In theWSDL file, an enumerated type for each field
that contains values represents these values. There are several fields like this for each entity.

Note: Enumerated values are returned in the default system language.

<s:simpleType name="case_problemtype">

<s:restriction base="s:string">

<s:enumeration value="Additional Software Required" />

<s:enumeration value="Software Bug" />

<s:enumeration value="Setup/Installation" />

<s:enumeration value="Customer knowledge" />

</s:restriction>

</s:simpleType>

List of Selection Fields

Company Selection Fields

l comp_employees
l comp_indcode
l comp_mailrestriction
l comp_revenue
l comp_sector
l comp_source
l comp_status
l comp_territory
l comp_type

Developer Guide 9-11

Chapter 9

Person Selection Fields

l pers_gender
l pers_salutation
l pers_source
l pers_status
l pers_territory
l pers_titlecode

Lead Selection Fields

l lead_decisiontimeframe
l lead_priority
l lead_rating
l lead_source
l lead_stage
l lead_status

Communication Selection Fields

l comm_action
l comm_hasattachments
l comm_notifydelta
l comm_outcome
l comm_priority
l comm_status
l comm_type

Opportunity Selection Fields

l oppo_priority
l oppo_product
l oppo_scenario
l oppo_source
l oppo_stage
l oppo_status
l oppo_type

Case Selection Fields

l case_foundver
l case_problemtype
l case_productarea
l case_solutiontype
l case_source
l case_stage

9-12 Sage CRM

Chapter 9: Web Services

l case_status
l case_targetver

Address and Product Selection Fields

l addr_country
l prod_uomcategory

Using GetDropDownValues

Use the getdropdownvalues function. See List of Web Services Functions (page 9-5) to get the list of
the drop-down fields in a table and the list of values that CRM expects for that field.

This is an example in C# of a function to populate a ComboBox with selection values from a given
field.

private void LoadDropDowns(string entity, string fieldname, ComboBox controlname,

WebService WS)

{

dropdownvalues[] DropDowns;

DropDowns = WS.getdropdownvalues(entity);

controlname.Items.Clear();

for (int i = 0; i < DropDowns.Length; i++)

{

if (DropDowns[i].fieldname == fieldname)

{

for (int x = 0; x < DropDowns[i].records.Length; x++)

{

controlname.Items.Add(DropDowns[i].records[x].ToString());

}

}

}

controlname.SelectedIndex = 0;

}

To use the function to display the comp_sector selection values in a ComboBox called 'comboSector'
(where the web service object is called oWebService):

LoadDropDowns("company", "sector", comboSector, oWebService);

Introduction to Web Services Examples

There are Sample SOAP requests and a suite of Visual Studio C# application examples to assist in
the development of Web Services applications for Sage CRM.

Sample SOAP requests can be found here: Sample SOAP Requests (page 9-15)
C# applications are provided with your CRM installation and can be found in the
WWWRoot\Examples\Webservices\ folder (usually C:\Program
Files\Sage\CRM\CRM\WWWRoot\Examples\Webservices\). A summary of each of the sample
applications is given below. In each case the code is written in C# Visual Studio 2005.

Youmust log on for each example before you run it. To do this, enter your CRM
username and password and click the LogOn button. When you are finished running
your example click the LogOff button. Remember to change the webservice location to

Developer Guide 9-13

Chapter 9

match your installation.
http://<webserver>/<crminstall>/eware.dll/webservice/webservice.wsdl

CRM Add Resource

This is an example of adding a resource (user) to CRM through web services. The sample code lets
you enter a first name and a last name for the resource. It creates a record in the User table.

CRM AlterColumnWidth

This example demonstrates how to alter the width of a column on a table in CRM. The Company table
and column comp_practicefield is hard coded for this example.

CRM Create

This example shows how to create a company, person, address and phone record.

CRM Delete

This example shows how to delete a company from CRM. The user must enter a company id for this
to work.

CRM Logon and Logoff

This example shows how to log on and log off. When the user logs onto CRM, a session id is returned
and displayed on the form.

CRM MetaData

This example shows how to get information about CRM tables. The user can select from five entities
(company, person, case, opportunity and communication) in a list. By clicking theMetaData button,
all the table columns are displayed on the left-hand pane. Highlighting any of the columns will display
information about that column. For example, field name, field type and field length. There is also a
button called AllMetaData. When selected, the button displays all themain CRM tables in a drop-
down list. The user can then select from the list and see all columns associated with that table.

CRM QueryEntity

This example shows how to query a table—in this case the company table. The user enters a known
company id and clicks the Search button. The query returns all people associated with the specified
company id.

CRM QueryIdNoDate

This example allows the user to enter a date or chose a date from a calendar. The user can then click
the Query N/D button. A list of company ids—where the update date is greater than or equal to the
date entered—is returned.

CRM SelectionLists

This example demonstrates the use of selection lists. The user can select from a list of seven tables
(company, person, opportunity, case, communication, solution, or library) and then clicks the button
List. If the user selects company, for example, and clicks List, the Lists drop-down list is populated
with all selection fields in that table. For example, Revenue, Sector, and Status. On choosing a
selection field from this list, the left-hand pane is populated with values from the selection field when
the user clicks Lists Items. For example, if the Status field from the company is chosen, the values
on the left-hand pane display the following: Archive, Closed, and Inactive.

CRM SID Grabber

This example shows how to grab the session id from the logged on CRM install. At least one user
must be logged on for this to work. It displays the session id and the version number.

9-14 Sage CRM

Chapter 9: Web Services

CRM SID_Key

This is an example shows how to grab the session id from the logged on CRM install. At least one
user must be logged onto CRM for this to work. It displays the session id on the form.

CRM Update

This is an example of how to update a CRM table. For this example, the user enters a valid company
id. The fields that can be updated are Source andWebsite for purposes of the demo. When the user
clicks the Update button a popup box is displayed letting the user know that the record has been
updated.

CRM Version

This is an example of how to get the version number of the CRM install. It displays the session id on
the form and the version number in a popup box.

Sample SOAP Requests

The following sections provide a number of sample Soap requests. Some of the request examples are
in C# and some are in XML.

Sample Soap Request for Logon

This C# example illustrates how to log onto the server:

//An Instance of the web service.

private static WebService binding = null;

//Persistent for the duration of the program, maintain the logon results

private static logonresult SID = null;

private static void LogonToCRMSystem()

{

try

{

SID = binding.logon("admin", "");

binding.SessionHeaderValue = new SessionHeader();

binding.SessionHeaderValue.sessionId = SID.sessionid; //Persistent SID

return true;

}

catch (SoapException e)

{

Write(e.Message);

}

catch (Exception e)

{

Write(e.Message + "\n" + e.StackTrace);

}

}

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<logon xmlns="http://tempuri.org/type">

<username>admin</username>

<password />

Developer Guide 9-15

Chapter 9

</logon>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Logoff

This XML example illustrates how to log off:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>57240080053832</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<logoff xmlns="http://tempuri.org/type">

<sessionId>57240080053832</sessionId>

</logoff>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Delete

This C# example shows how to delete a company whose ID is 66:

ewarebase[] idList = new ewarebase[1];

companyid aCompanyId = new companyid();

aCompanyId.companyid1 = 66; //66 is id of company to delete

idList[0] = aCompanyId;

deleteresult aResult = binding.delete("company",idList);

if(aResult.deletesuccess == true)

Console.WriteLine("Number deleted successfully : " + aResult.numberdeleted);

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>127169567253830</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<delete xmlns="http://tempuri.org/type">

<entityname>company</entityname>

<records xsi:type="companyid">

<companyid>66</companyid>

</records>

</delete>

</soap:Body>

</soap:Envelope>

Sample Soap Request for Update

This C# example shows how to change the company name for a company whose ID is 66:

9-16 Sage CRM

Chapter 9: Web Services

private static void UpdateACompany()

{

String idString = "66";

String newName = "newName";

ewarebase[] companyList = new ewarebase[1];//can update a number of companies

company aCompany = new company();

aCompany.companyid = Convert.ToInt16(idString);

aCompany.companyidSpecified = true;

aCompany.name = newName;

companyList[0] = aCompany;

updateresult aresult = binding.update("company", companyList);

if(aresult.updatesuccess == true)

{}

else

{}

}

This is the XML request that Web Services processes:

<?xml version="1.0" encoding="utf-8" ?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<SessionHeader xmlns="http://tempuri.org/type">

<sessionId>12663708753831</sessionId>

</SessionHeader>

</soap:Header>

<soap:Body>

<update xmlns="http://tempuri.org/type">

<entityname>company</entityname>

<records xsi:type="company">

<people xsi:nil="true" />

<address xsi:nil="true" />

<email xsi:nil="true" />

<phone xsi:nil="true" />

<companyid>933</companyid>

<name>Design Wrong Inc</name>

</records>

</update>

</soap:Body>

</soap:Envelope>

Sample Soap Request for QueryEntity

This example queries a company record whose ID is 66:

company aCompany = (company) binding.queryentity(66, "company").records;

Sample Soap XML Representing a Company

The following is the XML representing a company whose ID is 65:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<SOAP-ENV:Envelope SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Developer Guide 9-17

Chapter 9

<SOAP-ENV:Body>

<queryentityresponse xmlns="http://tempuri.org/type">

<result>

<records xsi:type="typens:company" mlns:typens="http://tempuri.org/type">

<typens:companyid>65</typens:companyid>

<typens:primarypersonid>79</typens:primarypersonid>

<typens:primaryaddressid>77</typens:primaryaddressid>

<typens:primaryuserid>9</typens:primaryuserid>

<typens:name>AFN Interactive</typens:name>

<typens:website>http://www.AFNInteractive.co.uk</typens:website>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

<typens:librarydir>A\AFN Interactive(65)</typens:librarydir>

<typens:secterr>-1845493753</typens:secterr>

<email>

<entityname>email</entityname>

<records xsi:type="typens:email" xmlns:typens="http://tempuri.org/type">

<typens:emailid>120</typens:emailid>

<typens:companyid>65</typens:companyid>

<typens:type>Sales</typens:type>

<typens:emailaddress>sales@AFNInteractive.co.uk</typens:emailaddress>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</email>

<phone>

<entityname>phone</entityname>

<records xsi:type="typens:phone" xmlns:typens="http://tempuri.org/type">

<typens:phoneid>211</typens:phoneid>

<typens:companyid>65</typens:companyid>

<typens:type>Business</typens:type>

<typens:countrycode>44</typens:countrycode>

<typens:areacode>208</typens:areacode>

<typens:number>848 1051</typens:number>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</phone>

<address>

<entityname>address</entityname>

<records xsi:type="typens:address" xmlns:typens="http://tempuri.org/type">

<typens:addressid>77</typens:addressid>

<typens:address1>Greenside House</typens:address1>

<typens:address2>50 Station Road</typens:address2>

<typens:address3>Wood Grn</typens:address3>

<typens:city>LONDON</typens:city>

<typens:postcode>N22 7TP</typens:postcode>

<typens:createdby>1</typens:createdby>

<typens:createddate>2004-08-30T18:10:00</typens:createddate>

<typens:updatedby>1</typens:updatedby>

<typens:updateddate>2004-08-30T18:10:00</typens:updateddate>

9-18 Sage CRM

Chapter 9: Web Services

<typens:timestamp>2004-08-30T18:10:00</typens:timestamp>

</records>

</address>

</records>

</result>

</queryentityresponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Developer Guide 9-19

Chapter 10: SData Read-only

In this chapter you will learn how to:

l Understand what SData is.
l Get an overview of SData within Sage CRM.
l Switch on SData for Entities and Views.
l Construct SData URLs.

Introduction to SData
SData is a standard for reading and writing data between Sage applications, enabling desktop,
server, and web-based Sage applications to communicate with each other as well as third-party
applications and theWeb.

Although the user of SData in Sage CRM is limited to read operations, the standard covers basic
reading, writing, updating and deleting of data between and across products as well as more complex
functions such as synchronization of data, security, discoverability of services, single sign-on, error
handling, and paging and batching of information for increased performance.

SData is built on top of leading industry standards including HTTP, XML, REST, and Atom/RSS.

SData Requests

Overview of SData within Sage CRM
Sage CRM is a read-only SData provider. This means entities from the Sage CRM system are
exposed using the SData standard so that they can be accessed (read and queried) by third-party
applications using ATOM feed technology.

Each entity and view within Sage CRM can be exposed for SData access (see Switching on SData).
An XSD schema definition is available to allow 3rd party application to know what entities are
exposed.

Developer Guide 10-1

Chapter 10

The SData request results in an XML return. This is either a single record or a list/collection of
records. Embedded URLs can be used to further requests, for example drill-downs (see SData
URLs).

Note: If the page size for an SData request for CRM data exceeds 100 records, it will default to 100
records. If a user is trying to access SData via an external system, and they define a page count of
200 records in the URL, the payload will return all the information in blocks of 100 (i.e. 100 records per
page). The samewill apply if the user tries to define a URLwith no pagination.

Agreeing to the SData License Agreement (http://sdata.sage.com/sdatacore_licensing.html) is a
prerequisite to working with SData.

Sage CRM can consume its own SData feeds and display them on the interactive dashboard. See
more information on this in the Sage CRM User Guide.

SData Prerequisites
To set up SData, you will need to have the following installed on the server:

l CRMwith a standard license key
l Apache Tomcat

Apache Tomcat is a servlet container developed by the Apache Software Foundation (ASF). Tomcat
implements the Java Servlet and the JavaServer Pages (JSP) specifications from Sun
Microsystems, and provides a "pure Java" HTTP web server environment for Java code to run. It is
installed as part of Sage CRM from version 7.0 onwards.

If requests are issued for the SData Provider then the request is redirected to the Tomcat Server.

If you working with Sage CRM 7.0 and you encounter a problem that requires a web server reset you
may need to reset both IIS and Apache Tomcat. For more information on this please refer to the
System Administrator Guide.

Switching on SData
This section shows how to switch on SData in Sage CRM.

All primary and secondary entities can be exposed for SData access. They are enabled by default.
Custom entities, external tables and user views can also be enabled for SData access (see next
sections).

To enable an entity for SData access:

1. Select Administration |Customization | <Entity> |External Access.
2. Click on theChange button.
3. Set theRead-only SData field to Yes or No.
4. Click Save.

To enable a custom table for SData access:

1. Select Administration |Advanced Customization | Tables And Databases |Create
Table.

2. Set theRead-only SData field to Yes.
To enable User views (views created by you) for SData access:

1. Select Administration |Customization | [Entity] |Views.
2. Select an existing view or create a new one.

10-2 Sage CRM

Chapter 10: SData Read-only

3. Select theSData View check box, andSave.

Note: Disabling an entity for SData access does not override views exposed for SData
access.

To select SData access during the Advanced CustomizationWizard steps:

1. Make sure the 7.0 Advanced CustomizationWizard zip is in the INF directory of your CRM
install.

2. Select Administration |Customization |Component Manager.
3. Browse to the INF directory of your install and upload the Advanced CustomizationWizard zip

file.
4. Click on the component, and select Install Component.
5. Select theAllow Read-only SData Access check box on the Component Parameters page.

Constructing SData URLs
The URL tomake a CRM view or entity available to another application would take the following
format:

http://myserver/sdata/installnamej/sagecrm/-/entity

l myserver is the name of the Sage CRM server
l installname is the name of the Sage CRM install
l entity is the name of the entity or view you want to access.

Wewill see some examples in the next section.

SData URL Examples
The following section shows some examples of SData URLs that would return Sage CRM data to a
third party application. The SData request results in an XML return.

Please refer to Developer Help files for sample URLs.

SData Authentication
All requests must be authenticated. SData “data” access is subject to the same territory model as
normal users, and profile security (CRUD rights per entity), and access rights depending on the
user’s type—Admin or Non-admin. CRM authentication should be encrypted within the HTTP
header.

The authentication uses Base64 encoding to encode the user name/password in the header of the
URL request (with a name of X-Sage-Authorization) . The example below shows how this might work:

request.Headers.Add("X-Sage-Authorization", "Basic "+

Convert.ToBase64String(Encoding.ASCII.GetBytes(this.userName + ":" + this.password)));

Any CRM user is able to use SData— it doesn’t use up a user license so a user can be logged into
CRM, and still be able to access CRM data via a third party, external application.

Developer Guide 10-3

Chapter 11: .NET

In this chapter you will learn how to:

l Discuss how to extend Sage CRMwith .NET.
l Use .NET Application Extensions.
l Debug the .Net API.
l Get an overview of the .NET Class Library documentation.
l Install the .NET SDK
l Troubleshoot a .NET SDK install.
l Uninstall the .NET SDK.
l Get an overview of .NET examples.
l Create a simple CRM interface.
l Create amore complex CRM interface.
l Create a project based on a Sage CRM template.
l Describe the CRM Basic Template.
l Describe the CRM Entity template.

Extending Sage CRM With .NET
The Sage CRM .NET API allows developers to create customizations using Visual Studio (or other
.NET authoring tools) which can then be run inside the Sage CRM application. This is an alternative
to the traditional ASP-based implementation of customizations.
The Sage CRM .NET API conforms to the .NET 2.0 Framework. It provides a type library that
exposes the Sage CRM objects, properties, andmethods. Through its core libraries the Sage CRM
.NET Component manages both data access and web interface generation.
Projects developed using the Sage CRM .NET Component will be compiled into a DLL and called
directly from within Sage CRM. By using Sage CRMmeta data Application Extensions constructed
using the Sage CRM .NET API will look, feel and perform exactly like core system pages.
To get started with the Sage CRM .NET API, see the following sections:

To do this... See this section...

Install the .NET SDK Installing the .NET SDK (page 11-8)

Understand the .NET Templates Creating a Project Based on a Sage CRM
Template (page 11-16)

See some examples .NET Examples (page 11-10)

See the Namespaces and Classes .NET API Class Library Documentation (page 11-
6)

Find out about debugging .NET API Debugging (page 11-4)

See how to call your .NET
assemblies in CRM

Using .NET Application Extensions (page 11-2)

Developer Guide 11-1

Chapter 11

Sage CRM .NET API and ASP.NET
Reference to the Sage CRM .NET component from within ASP.NET projects is not supported, so it
is not possible to use the API to create ASP.NET pages and run them inside CRM.

Programming Languages
Any programming language that conforms with the .NET 2.0 Framework can be used for the
development of Sage CRM Application Extensions (E.g. J#, C# VB.NET etc)

Note: Due to changes in the Sage CRM .NET API for version 6.2, any assemblies
created for versions prior to 6.2 will not work with Sage CRM 6.2 and vice-versa.

Component Manager
It is possible to use Component Manager to transfer .NET application assemblies to other CRM
systems. See Component Manager (page 6-1).

Connection Pool
A System Parameter, DotNetConnectionPool, allows .NET Connections to choose whether to use
the connection pool. The default is ‘N’.If set to N, this will release the connection when theObject is
destroyed.The number of connections will increase and decrease in accordance with thread
execution. If set to 'Y', CRM will use OLEDB to open database connections, andOLEDB has its own
database pool implementation.

For example, executing the following query sets this System Parameter to Y:

UPDATE Custom_sysparams

SET Parm_Value ='Y'

WHERE Parm_Name ='DotNetConnectionPool'

After a change to the System Parameters, refresh the System Parameters Metadata from within
Sage CRM inAdministration |System |Refresh Metadata.

Using .NET Application Extensions
When you have created a .NET assembly for CRM, youmust first copy it to the CustomDotNet
folder. You can then reference the assembly from buttons, menus etc within your CRM install.

The CustomDotNet Folder
The CustomDotNet folder is located here:
<CRM install path>\<install name\CustomDotNet
For exampleC:\Program Files\Sage\CRM\CRM\CustomDotNet.
There are two ways to add your custom .NET file to the CustomDotNet folder:

l Change the build location of the DLL.
l Copying the DLL file to the CustomDotNet Folder.

Changing the Build Location of the DLL
After creating your new project you can change the build location of the DLL to be your Custom
DotNet folder.
To change the build location of the DLL in Visual Studio:

11-2 Sage CRM

Chapter 11: .NET

1. Go toProject |ProjectName |Properties.
2. Edit the Output path.
3. Save the project and build it.

The DLL will be created in your Sage CRMCustomDotNet folder.

Copying the DLL file to the CustomDotNet Folder
If you have not changed the build location while working on the DLL file you can copy the file from
your build location to the CustomDotNet folder. You can check the default location of the DLL files by
going to Project | ProjectName Properties in Visual Studio. The file can be copied via windows
explorer to your CustomDotNet folder.

Calling the .NET Application Extension
Once the DLL is in place, you can use the followingmethods to launch the new custom Application
Extension:

l Call the .NET Application Extension from a Tab or Menu
l Call the .NET Application Extension from a hyperlink in a List Block
l Call the .NET Application Extension from within another custom .NET Application
l Call the .NET Application Extension from an ASP Page

Each of thesemethods is described below.

Calling the .NET Application Extension From Tabs/Menus
To call the .NET Application from a Tab or Menu, set the tab or menu Action to "customdotnetdll", and
enter the name of your file and your primary method in the "Custom Dot Net Dll Name" and "Method
Name" fields respectively.
For example, if you have created an assembly called QuickLook.dll, and you want to launch the
'RunQuickLook' method from a tab in the Company context, then follow these steps:

1. Select Administration |Customization.
2. Select theCompany entity. A sequence of tabs indicating customizable areas of the selected

entity is displayed.
3. Select the Tabs tab.
4. In the table displayed, click theCustomize icon beside the hyperlink for Company. The

Customize tabs page, which allows you to customize existing tabs or create new ones, is
displayed.

5. In this case, we want to add a new tab to run our .NET assembly. So in theProperties panel,
enter the nameQuickLook in the Caption field and click on theAdd button. A tab named
Searchbox has been added to the list under the heading Desktop HTML TabGroup Contents.
You can adjust this new tab's position in the tab sequence by using the up and down arrows
beside the list.

6. Next, we need to specify that the new tab runs the DLL that we have placed in our
CustomDotNet folder. In the Actions drop-down field, select the customdotnetdll option.

7. Next enter the DLLname (in this caseQuickLook) into theCustom Dot Net Dll Name field.
8. Finally, enter the basemethod name, in this caseRunQuickLook into theMethod Name field.
9. Click on theUpdate button to add these details to QuickLook tab.
10. Click on theSave button to confirm the changes.

Developer Guide 11-3

Chapter 11

Calling the .NET Application Extension From List Block Hyperlinks
You can allow users to run your custom .NET assembly by clicking on a hyperlink in a list block. To
set this up:

1. Open the List Definition for your List Block. For example to open the standard Company List
Definition, go toAdministration |Customization |Company and click on the Lists tab, and
then click onCompany Grid.

2. Select the field that you want to add the hyperlink to.
3. In the Field Properties panel, set theHyperlink To drop-down toCustom Dot Net DLL.
4. In theCustom Dot Net DLL Name field type the name of your DLL file (e.g. QuickLook).
5. In theCustom ID Fieldfield enter the Id field name that needs to be passed to the DLL

method (e.g. Comp_Companyid).
6. In theMethod Name field enter themethod name in your Base class file (e.g.

RunQuickLook).
7. Click on theUpdate button to save these updates to your field.
8. Click on theSave button to confirm the changes.

Calling the .NET Application Extension FromWithin Another Custom .NET
Application
If you want to call your custom .NET assembly from within another custom .NET assembly, use the
UrlDotNet method (part of theWeb class in the Sage.CRM.WebObject Namespace). For example:

string sUrl = UrlDotNet(ThisDotNetDll, "RunViewOpportunity");

AddUrlButton("Cancel", "Cancel.gif", sUrl);

You can also use the Dispatch.Redirect method within another DLL:

Dispatch.Redirect(UrlDotNet(“NewCompany.dll”, “RunDataPage”));

Note: The.NET API Redirect works differently from the Redirect in ASP. The redirect
will only happen when the .NET dll is finished processing the code, and it needs to
provide the HTTP response before being unloaded frommemory. This function should
only be used inside of BuildContents and returned after the redirect is set, otherwise
system performance could be seriously impacted. It is also recommended that only one
Redirect is used within the code, and the URL to be used is set within any previous
branches in the code.

Calling the .NET Application Extension From ASP Pages
To call a custom .NET assembly from within an ASP page, use the CRM.Url method. Please see
Url(Action) (page 8-26) method in the ASP Object reference. For example:

myContainer.AddButton(CRM.Button(“Add”,”new.gif”,CRM.Url(“CompanyNew.dll-

RunDataPage”)));

.NET API Debugging
There are the two different ways to setup the environment to allow debugging of the .Net API.

11-4 Sage CRM

Chapter 11: .NET

Note: Never use these configurations on a production system. They are strictly intended
for development or testing systems only!

Method 1: Change IIS Security
These steps are for IIS 6 and for the CRMDLL (EWARE.DLL) virtual directory only.

1. Go to: Control Panel | Administrative Tools | Internet Information Services
2. Select your Sage CRM Install | Right click – Properties | Directory Security | Anonymous

Access and Authentication Control – Edit.
3. Remove theAnonymous Access. Anonymous Access gives the .Net API process the same

permission as an IIS user, and this user hasn’t permission enough to allow debugging.
4. Make sure to check Integrated Windows Authentication.
5. Reset IIS.
6. In Visual Studio, add a break point to your code.
7. Select Debug |Attach To Process.
8. Find the inetinfo.exe process that shows as Managed in the type column, and click Attach.
9. Run your code and it should stop at the breakpoint.

Method 2: Use COM+

1. Go toControl Panel |Administrative Tools |Component Services.
2. ExpandComputers |My Computer |COM+ Applications.
3. Right-click onCOM+ Applications and select New |Application.
4. Select Create an Empty Application .
5. Enter a name, e.g. DotNetServerApp and select Server Application.
6. Click Next.
7. Under Account, select This User and enter the user name and password of an Administrator

account. The .Net API needs run under Administrator permissions to allow the VS Studio
debugger to be attached.

8. Click Next.
9. Click Finish. Your new application should appear under COM+ Applications.
10. Click the + sign beside your application to expand it, and right click Components and select

New |Component.
11. Select Import Components that are Already Registered.
12. Find the component Sage.CRM.Wrapper.SageCRMBase.
13. Click Next and click Finish.
14. On the Component Services screen, expandRunning Processes. Note that your newly

created application should not be in the list of running applications.
15. Now go to CRM and launch your .NET application from within CRM. Return to Component

Services and you should now see your application in the Running Processes list. Note that
there is a Process ID assigned to the application (in brackets beside the application name).
This is the process wewill use in Visual Studio.

16. In Visual Studio, add a break point to your code.
17. Select Debug |Attach to Process.

Developer Guide 11-5

Chapter 11

18. Find the process with the same Process ID noted above, and click Attach.
19. Run your code and it should stop at the breakpoint.

Troubleshooting

Problem Solution

Visual Studio doesn’t stop
at your break point.

Verify that the yourdll.pdb file is in
<installation>\CustomDotNet, theMicrosoft framework
needs this file to find the Source Code.

The "managed" option
didn’t appear on
inetinfo.exe process.

Reset IIS and run any .Net API Code. It’s necessary to
run .Net API code at least once before you canmake the
managed option available in Visual Studio.

The process isn't created
in Component Services.

Verify if you have the correct version of DLLs and if you
have set the correct password.

Themessage "Interface
Not Supported" appears
when the .Net Code is
invoked.

The COM+ Debug setup described here works only for
CRM 6.2 and later versions. Previous version will result in
this error message. If you are using the CRM 6.2, try to
un-register the DLLs and register again. Please see
Installation Troubleshooting (page 11-9).

The Debug stops working
after a few days.

Probably after setting up the application you have changed
your password and you didn’t update the password on
Component Service.

The application process is
created correctly on
Component Services, but
CRM shows themessage
"Interface Not Supported".

On Internet information service add the "Integrated
Windows Authentication" see:
http://msdn2.microsoft.com/en-
us/library/x8a5axew(vs.80).aspx

.NET API Class Library Documentation
The .NET Class Library documentation is provided with the CRM .NET SDK. It is in the form of a
Microsoft Help file and can be found in your CRMDotNet folder (normally C:\Program
Files\Sage\CRM\CRMDotNet\Class Library Documentation\Documentation.CHM).
You can also use the Object Browser in Visual Studio to view the descriptions of the Namespaces,
Classes, Methods and Properties.
The namespaces are listed below with a list of the principal classes under each.

Sage Namespace

l Address Types
l CaptionPositions
l Captions
l KeyList
l ParamNames
l RunExternalMethod
l SageCRMBase

11-6 Sage CRM

http://msdn2.microsoft.com/en-us/library/x8a5axew(vs.80).aspx
http://msdn2.microsoft.com/en-us/library/x8a5axew(vs.80).aspx

Chapter 11: .NET

l Styles
l UserOptions

Sage.CRM.WebObject Namespace

l DataPage
l DataPageBase
l DataPageDelete
l DataPageEdit
l ListPage
l SearchPage
l Web

Sage.CRM.Controls Namespace

l Entry
l EntryGroup
l EntrySelect
l GridCol
l List
l EntryAdvSearchSelect
l EntryCustom
l GridColCheckBox
l CountSql. Set a Custom count SQL to help the grid pagination. This can be used to improve

the grid performance. The SQL should return only one record which need to be named fcount
and represent the number of record returned by SelectSql + Filter properties. For example:
Select count(*) as fcount from Company

Sage.CRM.Data Namespace

l CommunicationEntity
l Entity
l EntityCollection
l QuerySelect
l Record

Sage.CRM.Utils Namespace

l Dispatch
l Keys
l Metadata
l TableInfo
l TranslationFamily
l UserSession

Developer Guide 11-7

Chapter 11

Sage.CRM.Blocks Namespace

l SageCrmBlock
l SageCrmChartGraphicBlock
l SageCrmFileBlock
l SageCrmGraphicBlock
l SageCrmMarqueeBlock
l SageCrmMessageBlock
l SageCrmOrgGraphicBlock
l SageCrmPipelineGraphicBlock

Sage.CRM.HTML Namespace

l HTMLBuilder

Sage.CRM.UI Namespace

l ComplexBox
l ContentBox
l HorizontalPanel
l HTMLString
l Hyperlink
l ImageLink
l ImageObject
l Panel
l UIEntry
l UIObject
l VerticalPanel

Installing the .NET SDK
The .NET SDK is available to Sage CRMDevelopment Partners and contains the following:

l Visual Studio Templates
l Extensive Code Snippets
l Source Code samples

Please note that the SDK is only distributed to Development Partners. The SDK Requires a DPP
License. Only DPP staff who have attended the official .NET training program will be able to place
support requests.

Pre-Installation Checklist
To develop applications with the Sage CRM .NET SDK, you will need:

l CRM installed on a server with a Developer license key.
l The .NET Setup package (CRMSDK.zip) comprising the CRMDOTNETSETUP.MSI file and

the SETUP.EXE executable.
l Visual Studio 2005 or 2008 (recommended, other development tools including Visual Studio

Express Editions, may also be suitable).
Servers on which compiled .NET Application Extensions are deployed require:

11-8 Sage CRM

Chapter 11: .NET

l Sage CRM 6.1 or later installation with a developer license key. Sage CRM 6.2 or later is
recommended for creating new .NET based customizations.

l .NET Framework 2.0.

Installing the SDK and .NET Templates
To install the CRM .NET SDK, extract all the files from CRMSDK.zip and run the SETUP.EXE file.

The SETUP.EXE installs the files(SageCrmEntityWizard, SageCrmWrapper and SageCRMNet) into
the Global Assembly Cache ("GAC") and registers the SAGECRMNET.DLL. These files are copied
into C:\Program Files\Sage\CRM\CRMDotNet\<version> by the installer.
When creating a new project in Visual Studio, you should see icons for CRM Basic Template and
CRM Entity Template under theMy Templates section of the New Project Window. If these do not
appear, see Installation Troubleshooting (page 11-9).

Installation Troubleshooting
This section describes how tomanually register the .NET assemblies, and also how tomanually
copy the CRM .NET Templates to the correct location.

Manually registering the DLL
After running the SDK setup, the following assemblies should be visible in the Global Assembly
Cache (c:\windows\assembly):

l SageCrmEntityWizard
l SageCRMNet
l SageCrmWrapper

Note: SageCrmWrapper and SageCRMNet are installed during themain Sage CRM
installation and not during the SDK installation.

If you encounter difficulty with the installation process, or if you receive an error message such as
'This template attempted to load an untrusted component...' when attempting to create a new project,
youmay need tomanually register the DLL.
The following steps show how tomanually (re)register the SageCRMNet assembly using the Visual
Studio 2005 command prompt (the procedure for Visual Studio 2008 is identical, except for the
program name):

1. Go toStart |Programs |Microsoft Visual Studio 2005 |Visual Studio Tools |Visual
Studio Command Prompt.

2. Navigate to the folder where the SAGECRMNET.DLL has been installed, and type:
cd \program files\sage\crm\crmdotnet\<version number>

Replace <version number> with the actual CRM version number, e.g. '6.2'.

3. Force reinstallation of the assembly to the Global Assembly cache
gacutil /if sagecrmnet.dll

4. Register it by typing:
regasm sagecrmnet.dll

Developer Guide 11-9

Chapter 11

5. Install SageCrmWrapper.dll:
gacutil /if SageCrmWrapper.dll

Manual Installation of the CRM Visual Studio .NET Templates
When you attempt to create a new project in Visual Studio, you should see icons for CRM Basic
Template and CRM Entity Template under theMy Templates section of the New Project Window. If
these do not appear, youmay have to copy the templates manually.
When you install the SDK, the installer will determine the version of Visual Studio that you are using
and it will copy the Template Zip files to the appropriate template folder. For example if you are using
Visual Studio 2008 then the Zip files will be copied to ...\My Documents\Visual Studio
2008\Templates\ProjectTemplates\Visual C#\
If you are using another Visual Studio version, you can copy the Zip files from the above location and
copy them to the appropriate location for your development environment. See your Visual Studio
documentation for more information.
If the Entity Template appears in 'My Templates' but does not function properly, then you can reinstall
the SageCrmEntityWizard Dll.

1. Go toStart |Programs |Microsoft Visual Studio 2005 |Visual Studio Tools |Visual
Studio Command Prompt.

2. Force re-installation of SageCrmEntityWizard.dll:
gacutil /if SageCrmEntityWizard.dll

Uninstalling the .NET SDK
To uninstall the SDK components follow these steps:

1. Go toStart |Control Panel |Add or Remove Programs.
2. Remove theCRMDotNetInstall.
3. Go toStart |Run and type c:\winnt\assembly or c:\windows\assemblyforWindows XP.
4. View theGAC(Global Assembly Cache) and check that CRMEntityWizard has been

removed. If not, it can be uninstalled by right clicking and selecting Uninstall from the pop up
menu.

DotNetWrapper and SageCRMNet are installed by themain CRM setup and should not
be removed.

.NET Examples
These Visual Studio C# example code demonstrates how to use the .NET API. It is assumed that
you have installed the SDK and have verified that the CRM Project Templates are available to you in
Visual Studio. Please see Installing the .NET SDK (page 11-8).

Creating a Simple Sage CRM Interface (page 11-11)
Creating aMore Complex CRM Interface (page 11-12)

The CRM .NET SDK also includes two complete Visual Studio sample application. After
installing the SDK, these can be found in your Visual Studio Projects folder, for example:
\My Documents\Visual Studio 2008\Projects\

11-10 Sage CRM

Chapter 11: .NET

Creating a Simple Sage CRM Interface
In this example wewill build a screen that displays two blocks. The first block will display the current
Company details and the second will display the company’s primary person details.

1. Within Visual Studio create a new project using the CRM Basic template (see Creating a
Project Based on a Sage CRM Template (page 11-16)).

2. Open theCustomPage.cs file.
3. Remove all the lines of code in this file that start withAddContent (i.e. the sample code that

we will not be using). Leave the GetTabs line as this will retrieve and display the Company
tabs.

4. In order to use the Record object youmust add in a reference to the Sage.CRM.Data
namespace at the top of the file:
using Sage.CRM.Data;

5. To be able to use the object EntryGroup youmust add references to the Sage.CRM.Controls
and Sage.CRM.Utils namespaces to the top of the file:
using Sage.CRM.Controls;

using Sage.CRM.UI;

6. Get the current company and person records, to do this we use the Sage.CRM.Data Record
object andmethod FindCurrentRecord.
//Retrieve Records

Record recCompany = FindCurrentRecord("Company");

Record recPerson = FindCurrentRecord("Person");

Note that the company and person records could also be retrieved by using
GetContextInfo to get the current company.

//Establish Context

string strCompID = GetContextInfo("Company", "Comp_Companyid");

string strPersonID = GetContextInfo("Company", "comp_primarypersonid");

//Retrieve Records

Record recComp = FindRecord("Company", "comp_companyid = " + strCompID);

Record recPers = FindRecord("Person", "pers_personid = " + strPersonID);

7. Once we have the current records we need to get the screens which will display the
information. To do this we use the Sage.CRM.Controls EntryGroup object and the
Sage.CRM.Utils MetaData.GetScreenmethod.
//Get the screens

EntryGroup screenCompanyBoxLong = new EntryGroup("CompanyBoxLong");

screenCompanyBoxLong.Fill(recComp);

EntryGroup screenPersonBoxShort = new EntryGroup("PersonBoxShort");

screenPersonBoxShort.Fill(recPers);

8. The last thing to do is display the screens with the current company and person record
information. HTML.StartTable begins the formatting of the table in which the blocks will be
displayed. HTML.BoxTitle adds a caption to the block. HTML.BoxContent adds the block to
themain area of the table. GetHtmlInViewMode is used to pass the record to the block.
HTML.BlankRow adds a blank line for formatting purposes.

Developer Guide 11-11

Chapter 11

//display the screens

VerticalPanel vpMainPanel = new VerticalPanel();

vpMainPanel.AddAttribute("width", "100%");

vpMainPanel.Add(screenCompanyBoxLong);

vpMainPanel.Add(screenPersonBoxShort);

AddContent(vpMainPanel);

9. Build the Solution in Visual Studio.
10. Copy the DLL to the CustomDotNet folder. Please see Using .NET Application Extensions

(page 11-2).
11. Create a tab to call the DLL. Please see "Calling the .NET Application Extension From

Tabs/Menus" in Using .NET Application Extensions (page 11-2).
12. When launched from the tab, the screen that you have created is displayed.

Companyand Person details

Creating a More Complex CRM Interface
In this example we are going to create a screen that displays company, person and opportunity entry
blocks, allowing three records to be entered and saved at the same time.The user will then be
redirected to the company summary screen of the newly created company. The CRM .NET SDK
includes the complete code for this example. After installing the SDK, the solution file can be found in
your Visual Studio Projects folder, for example: \My Documents\Visual Studio 2008\Projects\ .

1. Within Visual Studio open a new project using the CRM Basic Template. Please see Creating
a Project Based on a Sage CRM Template (page 11-16).

2. Within the Solution Explorer at the right-hand side of the screen right click on the name of your
new project and select Add |Class.

3. Select the first type on the list (C# class) and name your class. This will add a new blank C#
class to your project. Now we add code to build and display our blocks and save the
information entered by the user.

4. First wemust add references to the Sage.CRM namespaces wewill use at the top of the file.
These allow us access to the Sage CRM .NET objects, methods and properties wewill need.
using Sage.CRM.Blocks;

using Sage.CRM.Controls;

using Sage.CRM.Data;

using Sage.CRM.HTML;

using Sage.CRM.Utils;

using Sage.CRM.WebObject;

using Sage.CRM.UI;

11-12 Sage CRM

Chapter 11: .NET

5. Now wewill start to build the screen. The class EntryScreen has been created for us. We
want this to be an instance of the Sage.CRMwebobject class calledWeb. This will allow us
write the HTML that builds the screen using the SageCRM API calls. To do this change the
class definition line as below:
class EntryScreen: Web

6. TheWeb class provides us with onemainmethod to write our HTMLwhich will display the
screen wewant to create. This is called BuildContents. We need to override the base class in
order to implement our own code. To this we add this code within the EntryScreen class:
public override void BuildContents(){

}

7. It is within the above curly braces that we add our code. In the above code statement Public
indicates that variables declared are visible to all methods; Override indicates that themethod
has the same name as one in a base class and is to be used instead of the version in the base
class and theVoid return type indicates that amethod does not have a return value.

8. Now wewant to display the screens. First we set up the form in which they will be displayed:
AddContent(HTML.Form());

9. Now wewill add code to the class that will get the blocks, display and format them and save
the data entered by the user. The first step is to get the blocks or screens that will allow the
user to enter data:
EntryGroup screenCompanyBoxLong = new EntryGroup("CompanyBoxLong");

screenCompanyBoxLong.Title = Metadata.GetTranslation("tabnames", "company");

EntryGroup screenPersonBoxLong = new EntryGroup("PersonBoxLong");

screenPersonBoxLong.Title = Metadata.GetTranslation("tabnames", "person");

EntryGroup screenOppo = new EntryGroup("OpportunityDetailBox");

screenOppo.Title = Metadata.GetTranslation("tabnames", "opportunity");

10. We determine whichmode we are in - i.e. are we editing the page or are we saving data. To do
this we need to check the hidden field HiddenMode to see if it has been set to Save, if so then
we need to create and save a new record for company, person and opportunity and in the
process saving the user entered data.
string hMode = Dispatch.EitherField("HiddenMode");

if (hMode == "Save")

{

//Code for saving

}

else

{

//Code for displaying the forms

}

11. If we are in savemode then we populate the three tables with the data from our forms:
Record recCompany = new Record("Company");

screenCompanyBoxLong.Fill(recCompany);

recCompany.SaveChanges();

Record recPerson = new Record("Person");

recPerson.SetField("pers_companyid",recCompany.GetFieldAsInt("comp_companyid"));

screenPersonBoxLong.Fill(recPerson);

recPerson.SaveChanges();

Developer Guide 11-13

Chapter 11

recCompany.SetField("comp_primarypersonid",recPerson.GetFieldAsInt("pers_

personid"));

recCompany.SaveChanges();

Record recOppo = new Record("Opportunity");

recOppo.SetField("oppo_primarycompanyid",recCompany.GetFieldAsInt("comp_

Companyid"));

screenOppo.Fill(recOppo);

recOppo.SaveChanges();

12. Now the records have been created and saved. Wewant to redirect the user to the new
company summary screen. To do this we use the we use the Dispatch.Redirect method. We
need to pass it the Sage CRM action key 200 which is for the company summary screen. We
also need to pass in the company id for the newly created company record. To do this we need
to split action key url and add in the key1=CompanyId, see the code below:
Please refer to Developer Help files for code sample

Note: The.NET API Redirect works differently from the Redirect in ASP. The
redirect will only happen when the .NET dll is finished processing the code, and it
needs to provide the HTTP response before being unloaded frommemory. This
function should only be used inside of BuildContents and returned after the
redirect is set, otherwise system performance could be seriously impacted. It is
also recommended that only one Redirect is used within the code, and the URL to
be used is set within any previous branches in the code.

13. If we are in edit mode, then we create a vertical panel and add the three entry boxes to it. In
order for the form to work properly we need to add the hidden field HiddenMode to the class.
AddContent(HTML.InputHidden("HiddenMode", ""));

VerticalPanel vpMainPanel = new VerticalPanel();

vpMainPanel.AddAttribute("width", "100%");

screenCompanyBoxLong.GetHtmlInEditMode();

screenPersonBoxLong.GetHtmlInEditMode();

screenOppo.GetHtmlInEditMode();

vpMainPanel.Add(screenCompanyBoxLong);

vpMainPanel.Add(screenPersonBoxLong);

vpMainPanel.Add(screenOppo);

AddContent(vpMainPanel);

14. The code above will display the three blocks in edit mode. We have not added any buttons or
any code to save the data entered. We need a Save and a Clear button. The clear button will
take us to the sameDLLmethod:
AddUrlButton("Cancel", "cancel.gif", UrlDotNet(ThisDotNetDll, "RunEntryScreen"));

The clear button calls ThisDotNetDll, meaning the DLL we are in and then calls themethod
RunEntryScreen (which is themethod wewill create in the Base.cs file that displays the
interface we are building).

15. The Save button will refresh the screen and pass in a value to hidden field we will create. This
will indicate the screen is now in Savemode.
string sUrl ="javascript:document.EntryForm.HiddenMode.value='Save';";

AddSubmitButton("Save", "Save.gif", sUrl);

11-14 Sage CRM

Chapter 11: .NET

16. We also add a Help button that links to a html page in the help system:
string strHelpUrl = "/Main Menu/Default_CSH.htm?href=AI_FAQs.html";

AddHelpButton(strHelpUrl);

As an alternative, you can use AddHelpButton("help.htm"); This gives you
access to the list of help files in inline translationmode. Please refer to the
System Administrator Guide for more information.

17. Now the records have been created and saved. Wewant to redirect the user to the new
company summary screen. To do this we use the we use the Dispatch.Redirect method. We
need to pass it the Sage CRM action key 200 which is for the company summary screen. We
also need to pass in the company id for the newly created company record. To do this we need
to split action key url and add in the key1=CompanyId, see the code below:
Please refer to Developer Help files for code sample.

18. Now wemust add amethod to the Base.cs file which will allow us to run this class from within
Sage CRM.

19. Open Base.cs, copy the public method RunMyCustomPage, paste it in below the exising
RunMyCustomPage. Rename this to be somethingmeaningful like RunEntryScreen and
change the line of code to call an instance of the class EntryScreen:
public static void RunEntryScreen(ref Web AretVal)

{

AretVal = new EntryScreen();

}

20. Build the Solution in Visual Studio.
21. Copy the DLL to the CustomDotNet folder. Please see Using Using .NET Application

Extensions (page 11-2).
22. Create a tab to call the DLL. Please see "Calling the .NET Application Extension From

Tabs/Menus" in Using .NET Application Extensions (page 11-2).
Here is the complete code for theEntryScreen.cs file:

Please refer to Developer Help files for code sample.

And here is the complete code for the Base.cs file:

using System;

using System.Collections.Generic;

using System.Text;

using Sage.CRM.WebObject;

namespace CompoundEntryScreen

{

public static class AppFactory

{

public static void RunEntryScreen(ref Web AretVal)

{

AretVal = new EntryScreen();

}

}

}

Developer Guide 11-15

Chapter 11

Creating a Project Based on a Sage CRM Template
After the successful installation of the SDK components, you can launch Visual Studio to create a
project based on a Sage CRM template.
To create a new project:

1. Select New |Project from themenu bar.
2. In the New Project dialog box, select Visual C# from the Project Types pane.
3. Select either theCRM Basic Template or theCRM Entity Template from theMy Templates

section.
4. Type the application’s name in theName field.
5. Click OK.

The files, references, and stub code generated by a CRM Extension template provides the developer
with a compilable application that is open to customization and extension.

CRM Basic Template
The CRM Basic Template generates files and code that enables developers to build code which
implements customized versions of standard CRM interfaces and functionality.
The following class files are created by the CRM Basic Template:

l Base.cs
l CustomPage.cs

Base.cs holds themethods that will be called from within Sage CRM, i.e. themethod name that will
be used to call the application from the CRM tab or menu etc.
Base.cs contains the following code initially:

using System;

using System.Collections.Generic;

using System.Text;

using Sage.CRM.WebObject;

namespace Crm_Basic_Template1

{

//static class AppFactory is REQUIRED!

public static class AppFactory

{

public static void RunMyCustomPage(ref Web AretVal)

{

AretVal = new MyCustomPage();

}

}

}

The public class AppFactory is required in every Sage CRM Application Extension. This is where the
methods to be called from within Sage CRM reside.
The only method, RunMyCustomPage, will run the custom interface that you create in the second
class file CustomPage.cs.
CustomPage.cs contains this code initially:

using System;

using System.Collections.Generic;

using System.Text;

using Sage.CRM.WebObject;

11-16 Sage CRM

Chapter 11: .NET

namespace Crm_Basic_Template1

{

public class MyCustomPage : Web

{

public override void BuildContents()

{

//Add your content here!

GetTabs();

AddContent("My Custom Page");

AddContent("
");

//how to show translated values - maybe

AddContent(Metadata.GetTranslation(Sage.Captions.sFam_GenMessages,

"HelloWorld"));

AddContent("
");

//how to check sys param values

AddContent("The Base Currency is: " +

Metadata.GetParam(Sage.ParamNames.BaseCurrency));

AddContent("
");

//...etc

//Dispatch.

}

}

}

The statement using Sage.CRM.WebObject has been included in CustomPage.cs so that we can
implement an instance of a web class. Of course, other 'Using' statements can be added. See .NET
Examples (page 11-10).
Web classes give access tomethods to build HTML to be returned to the browser. The public class
MyCustomPage is an instance of the general Web class simply calledWeb. This is used for building
screens from scratch. In the CRM Entity Template (page 11-17) you will see the use of the
specializedWeb classes such as DatePage, DataPageEdit, ListPage etc.
In this class the public method BuildContents () is overwritten. This means that this version of the
method will be used instead of that in the base class. BuildContents() is themainmethod that will
always be called - override this method to build your own page. Themain function of this method is to
build up the HTML that creates the screen that is shown to the user.
The BuildContents method in CustomPage.cs initially contains somemethods to add tabs (GetTabs)
and content (AddContent) to the screen. These can be replaced with your ownmethods and code.

CRM Entity Template
The CRM Entity Template allows the rapid creation of a .NET Application Extension that provides a
customized graphical user interfaces for CRM Entities.

Creating a new CRM Entity Application in this way does not create a new CRM entity
table(s), screens and listblocks. This should be done first in the Sage CRM front end, or
through the Advanced CustomizationWizard. Please see Database Customization
(page 5-1) and Advanced CustomizationWizard (page 5-17) for more details.

To create a new CRM Entity Template:

1. Select New |Project from themenu bar.
2. In the New Project dialog box, select Visual C# from the Project Types pane.
3. Select theCRM Entity Template from theMy Templates section. The CRM .NET Entity

Wizard dialog box is displayed.

Developer Guide 11-17

Chapter 11

4. Fill out the fields as follows:
l New Entity Name. The name of the entity you are creating. For example "Project".
l Id field. The identity field in the table you created for this entity. For example "proj_

projectid".
l Prefix. The prefix the fields in the new table have. For example "proj".

5. Click GO!
The following files are created by the CRM Entity Template:

File Description

CrmBase.cs Similar to Base.cs created in the CRM Basic Template.
Contains sevenmethods, one to call each of the class files
created by the template.

EntityDataPage.cs Displays the screen that allows a user to view an entity in
Sage CRM. The IdField and EntityName are taken from
those entered on setting up the CRM Entity Template. The
AddEntryGroup specifies what entry group will be
displayed. It defaults to EntityNameNewEntry, this can be
changed to whatever you have called your block in Sage
CRM.

EntityDataPageDelete.cs The files EntityDataPageNew.cs, EntityDataPageEdit.cs
and EntityDataPageDelete.cs are similar to
EntityDataPage.cs. They create an instance of their
respective specializedWeb classes and again the IdField,

EntityName and AddEntryGroup are set based on the
information entered when the template was created.

EntityDataPageEdit.cs See above

EntityDataPageNew.cs See above

EntityListPage.cs The EntityListPage.cs displays a list of the entities within
Sage CRM. Again it creates an instance of a specialized
Web class ListPage. The EntityName is taken from the
information entered when the entity template was created.
The list name and filter box name specify what screens
should be displayed. The FilterByField and
FilterByContextId allow the list to be filtered dynamically, in
this case by user id.

EntitySearchPage.cs The EntitySearchPage displays the search or find screen
for the entity. It creates an instance of the specializedWeb
class SearchPage.

11-18 Sage CRM

Index

.

.NET 11-1

architecture 2-3

class library documentation 11-6

creating complex interface 11-12

creating simple interface 11-11

CRM basic template 11-16

CRM Entity Template 11-17

debugging 11-4

examples 11-10

extending Sage CRM 11-1

installation troubleshooting 11-9

installing the SDK 11-8

Sage CRM template 11-16

vs classic ASP 2-4

.NET application extensions

using 11-2

.NET SDK

uninstalling 11-10

3

3rd party gadget

adding to interactive dashboard 4-16

A

Accessing

user information 3-9

add 9-6

AddAddress(Address, Name) 8-9

AddBlock(Block) 8-37

AddButton(ButtonString) 8-37

AddCoachingCaptions 6-15

AddColumn 6-16

AddContent(Content) 8-17

AddCustom 6-16

AddCustom_ContainerItems 6-16

AddCustom_Data 6-17

AddCustom_Databases 6-18

AddCustom_Edits 6-18

AddCustom_Lists 6-19

AddCustom_Report 6-20

AddCustom_ReportBand 6-21

AddCustom_ReportChart 6-21

AddCustom_ReportField 6-22

AddCustom_ReportGroup 6-22

AddCustom_ScreenObjects 6-23

AddCustom_Screens 6-24

AddCustom_Scripts 6-25

AddCustom_Tables 6-26

AddCustom_Tabs 6-27

AddEntry(8-56

AddFile(Value) 8-12

AddGridCol 8-73

Adding

3rd party gadget to interactive dashboard 4-
16

buttons to button groups 4-8

charts to classic dashboard 4-12

content block to classic dashboard 4-11

content block to interactive dashboard 4-
15

frames 7-17

help to custom pages 4-3

Developer Guide Index – i

Index

list block to classic dashboard 4-11

new chart 7-4

new data entry screens 5-7

new graphic 7-10

report view to entity 5-25

tab linking to ASP page 4-25

AddLPCategory 6-27

AddLPGadget 6-28

AddLPLayout 6-28

AddLPUserLayout 6-28

AddMessage 6-29

AddPipeEntry 8-83

AddProduct 6-29

addrecord 9-7

addresource 9-6

address 9-9

Address 8-15

AddressList Object 4-22, 8-9

methods 8-9

properties 8-10

AddView 6-29

Adminmenu button 4-21

Advanced component manager options 6-9

Advanced customization wizard

example 5-26

parameters 5-18

Advanced CustomizationWizard 5-17

aisid 9-8

Alignment 8-70

AllowBlank 8-44

AllowOrderBy 8-70

AllowUnassigned 8-54

altercolumnwidth 9-6

Animation 7-17

adding frames 7-17

delay 7-17

loops 7-17

sample ASP 7-18

Animation(Mode, Value) 8-60

Application level security 2-5

Arc 8-59

ArgObj 8-29

ASP

vs .NET 2-4

ASP Object Reference 8-1

introduction 8-2

ASP page

building 3-1

integrating into CRM 3-4

ASP Quick Reference Table 8-3

Attachment Object 4-22, 8-10

methods 8-10

properties 8-11

AttachmentList Object 4-22, 8-11

properties 8-11

Attachments 8-14

Authenticated 8-98

AuthenticationError 8-98

B

BackGradient(Visible, color1, color2) 8-33

BCC 8-15

Block

creating new 4-18

customizing 4-19

displaying 4-19

Index -ii Sage CRM

Index

Blocks 4-18

overview 4-1

Body 8-13

Bof 8-87

Border 8-68

Brush 7-15

Brush(Mode, Value) 8-60

Building

ASP page 3-1

Button 8-23

Button groups

adding buttons to 4-8

creating 4-8

restricting access 4-9

viewing 4-9

Button Groups 4-8

ButtonAlignment 8-39

ButtonImage 8-39

ButtonLocation 8-40

Buttons 4-8

creating new adminmenu 4-21

mainmenu 4-20

ButtonTitle 8-40

C

Caption 8-45

CaptionFamily 8-75

CaptionPos 8-45

cases 9-9

Category 8-101

CC 8-15

Changing

entity logo 5-25

image color 7-14

Changing the current component 6-4

Chart

adding 7-4

examples 7-4

Charts

example 7-5

external data 7-3, 7-5

overview 7-1

special effects 7-3

ChartTitle(text) 8-34

CheckLocks 8-29

ChooseBackGround(Value) 8-84

Chord 8-60

Classic Dashboard 4-9

adding charts 4-12

adding content block 4-11

adding list block 4-11

customizing 4-9

Clear() 8-12

Clearing

image 7-14

Client-side

scripting 3-7

Color 7-14

communication 9-9

company 9-9

Component details screen 6-2

Component Manager 6-1

adding amessage example 6-36

adding a new column example 6-37

adding a new view example 6-38

adding customizations 6-3

Developer Guide Index – iii

Index

advanced options 6-9

changing current component 6-4

chaning a screen name example 6-36

copying an ASP page example 6-37

creating a new table example 6-37

error handling 6-12

installing a component 6-7

introduction 6-1

log file 6-8

methods 6-14

modifying scripts 6-11

multi-stage customizations 6-5

multiple installs example 6-36

preview changes 6-4

recording 6-2

replacing text in ASP page example 6-37

saving a component 6-7

script parameters 6-13

scripting changes 6-4

scripting customizations 6-4

scripting examples 6-36

scripting workflows 6-6

starting 6-3

stopping 6-3

using the DataFile object example 6-38

what can be recorded 6-1

Configuring

web services 9-3

Connecting

database 5-5

external database 5-5

Content block

adding to classic dashboard 4-11

adding to interactive dashboard 4-15

Contents 8-43

Context 3-7

ConvertValue 8-27

CopyAndDropColumn 6-30

CopyAspTo 6-30

CopyErrorsToPageErrorContent 8-55

CopyFile 6-30

Count 8-10, 8-11, 8-104

CreateNewDir 6-30

CreateQueryObj 3-5

CreateQueryObj(SQL, Database) 8-18

CreateRecord 3-6

CreateRecord(TableName) 8-18

CreateScript 3-10, 8-46

CreateTable 6-31

Creating

adminmenu button 4-21

button groups 4-8

complex CRM interface 11-12

custom page 5-5, 5-7

custom queries 3-5

entity level scripts 5-14

external link menu 4-21

invoices tab 5-6

list 4-3

list object 5-5

mainmenu button 4-20

new block 4-18

new database connection 5-3

new main entity 5-17

new tab group 4-24

new table connection 5-4

Index -iv Sage CRM

Index

screen 4-5, 5-7

simple CRM interface 11-11

tab to display list 5-4

table 5-1

table level script 5-14

CRM AddResource 9-14

CRM AlterColumnWidth 9-14

CRM Blocks Overview 4-1

CRMCreate 9-14

CRMDelete 9-14

CRM Entity Template 11-17

CRM interface

creating complex 11-12

CRM Logon and Logoff 9-14

CRMMetaData 9-14

CRMObject 4-21, 8-17

methods 8-17

properties 8-22

CRMObjects Overview 4-21

CRMQueryEntity 9-14

CRMQueryIdNoDate 9-14

CRM SelectionLists 9-14

CRM SID Grabber 9-14

CRM SID_Key 9-15

CRM TargetListField Object 4-22

CRM TargetListFields Object 4-22

CRM TargetLists Object 4-22

CRMUpdate 9-15

CRM Version 9-15

CRMBaseObject 4-21, 8-22

methods 8-23

properties 8-27

CRMBlock Object 4-23, 8-27

methods 8-28

properties 8-29

CRMChartGraphicBlock Object 4-24, 8-33

methods 8-33

properties 8-35

CRMContainerBlock Object 4-23, 8-36

methods 8-37

properties 8-39

workflow properties 8-41

CRMContentBlock Object 4-24, 8-43

properties 8-43

CRMEmail Object

methods 8-12

CRMEntryBlock Object 4-23, 8-43

methods 8-44

properties 8-44

CRMEntryGroupBlock Object 4-23, 8-55

methods 8-56

properties 8-57

CRMFileBlock Object 4-23, 8-57

properties 8-58

CRMGraphicBlock Object 4-24

methods 8-59

properties 8-68

CRMGridColBlock Object 4-23, 8-69

properties 8-70

sample ASP page 8-7

CRMListBlock Object 4-23, 8-72

methods 8-73

properties 8-75

sample ASP page 8-7

Developer Guide Index – v

Index

CRMMarqueeBlock Object 4-23, 8-77

properties 8-77

CRMMessageBlock Object 4-23, 8-79

properties 8-80

CRMOrgChartGraphicBlock Object 4-24

CRMOrgGraphicBlock Object 8-82

methods 8-82

CRMPipelineGraphicBlock Object 8-82

methods 8-83

properties 8-85

CRMPipeLineGraphicBlock Object 4-24

CRMQuery Object 4-23, 8-85

methods 8-86

properties 8-87

crmrecord 9-8

CRMRecord Object 4-22, 8-89

methods 8-89

properties 8-92

crmrecordtype 9-8

CRMSelfService Object 4-22, 8-95

methods 8-97

properties 8-98

CRMTargetListField Object 8-99

properties 8-99

CRMTargetListFields Object 8-103

methods 8-104

CRMTargetLists Object 8-99

creating and saving a Target List 8-102

methods 8-100

properties 8-100

retrieving a target list 8-103

currency 9-9

Current component 6-3

CurrentUser 3-9

Custom Entities

make availabe to reassign 5-24

Custom files 5-22

Custom page

creating 5-5, 5-7

Custom queries 3-5

CustomActionFile 8-71

CustomIdField 8-71

Customization

overview 2-6

Customization Basics 4-1

Customizing

block 4-19

classic dashboard 4-9

interactive dashboard 4-13

new entity 5-25

D

Database

connecting to 5-5

connecting to external 5-5

creating new connection 5-3

overview 2-7

Database customization

introduction 5-1

Database Customization 5-1

Database level security 2-6

DatabaseName 8-87

DataField 8-99

Debug 8-17

Debugging

.NET 11-4

Index -vi Sage CRM

Index

Deduplication

enabling 5-21

DefaultType 8-46

DefaultValue 8-47

Delay 7-17

delete 9-7

Delete(Index) 8-104

DeleteBlock(BlockName) 8-38

DeleteColumn 6-31

DeleteCustom_Caption 6-31

DeleteCustom_Captions 6-32

DeleteCustom_Field 6-32

DeleteCustom_Screen 6-32

DeleteCustom_ScreenObjects 6-32

DeleteEntry(EntryName) 8-56

DeleteGridCol(ColName) 8-73

DeleteRecord 8-92

example 5-17

DeliveryTime 8-14

Description 8-68, 8-101

Detached table level scripts 5-14

DirectoryPath 8-58

Dispatch Object 4-21

DisplayButton 8-41

DisplayForm 8-29, 8-80

Displaying

errors 7-14

Drawing

functions 7-14

DropTable 6-33

DropView 6-33

E

Editing

list object 5-6

mainmenu tab group 4-25

Effect(Mode, Value) 8-61

Ellipse(X1,Y1,X2,Y2) 8-61

email 9-9

Email Object 4-22, 8-12

properties 8-13

EmailAddress 8-17

Enabling

deduplication 5-21

EndSSSession 8-97

Entities 2-7

Entity

adding report view 5-25

changing logo 5-25

creating new main 5-17

customizing 5-25

Entity level script 5-14

example 5-15

functions 5-12

introduction 5-12

EntryType 8-47

Eof 8-88, 8-93

ewarebase abstract 9-8

ewarebaselist 9-8

Exclude(ATargetID) 8-100

ExecSql() 8-86

Execute(Arg) 8-28, 8-74

Extending Sage CRM

with .NET 11-1

Developer Guide Index – vii

Index

Extensibility

architecture 2-2

module 2-2

Extension 8-11

External images 7-10

F

FAM 8-48

FastLogon 8-27

Field Level Scripting 3-10

FieldName 8-48

Fields 8-101

FieldValue 8-88

FileName 8-58

FileOpen 6-33

FindRecord 8-19

FinishLandingPage 6-29

FirstRecord() 8-89

FlipHoriz() 8-61

FlipVert() 8-61

Font 7-16

Font(Mode, Value) 8-62

FontColor(Color) 8-62

FontSize(Size) 8-63

FormAction 8-30

Frames

adding 7-17

Functions

drawing 7-14

entity level scripts 5-12

table level scripts 5-12

web services 9-5

G

getallmetadata 9-7

GetBlock(BlockName) 8-19, 8-38

GetContextInfo(Context, FieldName) 3-7, 8-
24

GetCustomEntityTopFrame 8-20

GetDLLDir 6-34

getdropdownvalues 9-6

GetEntry 8-57

GetField() 6-33

GetGridCol 8-74

GetInstallDir 6-34

getmetadata 9-6

GetPage() 8-20

GetTabs(TabGroup) 8-25

Getting Started 3-1

GetTrans(Family, Caption) 8-20

GetUniqueFileName(Path, FileName) 8-16

getversionstring 9-7

GradientFill 8-63

Graphic

adding 7-10

effects 7-14

Graphics

examples 7-10

formats 7-8

overview 7-8

performance 7-9

special effects 7-17

Graphics and Charts 7-1

introduction 7-1

GrayScale() 8-63

Index -viii Sage CRM

Index

H

Header(Value) 8-13

Height 8-30

Help

adding to custom pages 4-3

Hidden 8-49

HorizontalMaximum 8-77

HorizontalMinimum 8-78

hSpace 8-69

I

idbase abstract 9-8

IdField 8-93

Image

clearing 7-14

external 7-10

Image color

changing 7-14

ImageHeight 8-69

ImageWidth 8-69

Include(ATargetID) 8-100

Init 8-97

InsertRecord

example 5-16

Installation

.NET troubleshooting 11-9

Installing

.NET SDK 11-8

Installing a component 6-1, 6-7

Interactive dashboard

customizing 4-13

Interactive Dashboard 4-13

adding 3rd party gadget 4-16

adding content block 4-15

IsHTML 8-13

Item 8-93, 8-104

ItemAsString 8-94

Items 8-10, 8-11

J

JumpEntity 8-49, 8-72

L

LabelX 8-35

LabelY 8-35

lead 9-9

Library

.NET API Class 11-6

LibraryPath 8-12

LineTo(X,Y) 8-64

List

creating 4-3

displaying 4-4

displaying using ASP page 4-4

displaying using runblock 4-5

List block

adding to classic dashboard 4-11

List object

creating 5-5

editing 5-6

ListBlock 3-5

Lists 4-3

LoadBMP(Filename) 8-63

LoadImage(text) 8-64

Developer Guide Index – ix

Index

LoadJPG(Filename) 8-64

Log file

component manager 6-8

Log(value) 8-16

logoff 9-5

logon 9-5

Logon(LogonId, Password) 8-26

LookUpFamily 8-50

Loops 7-17

M

mAddressFrom/mNameFrom 8-80

Mail Address Object 4-22

MailAddress Object 8-15

properties 8-15

MailAdmin(Subject, Body) 8-16

Mainmenu

create external link from 4-21

creating button 4-20

editing tab group 4-25

ManualChartEntry 8-34

MaxLength 8-50

mBody 8-80

Merging 7-16

mErrorMessage 8-81

Metadata 2-8, 5-23

Methods

component manager 6-14

Mode 8-22, 8-33

Modifying

systemmenus 4-20

Monochrome() 8-65

MoveTo(X,Y) 8-65

mSentOK 8-81

Msg 8-16

MsgHandler Object 4-22, 8-15

methods 8-16

properties 8-16

mShowCC/mShowBCC 8-81

mSubject 8-82

MultipleSelect 8-51

multiselectfield 9-8

N

Name 8-11, 8-15, 8-30, 8-101

New Workflow Properties

sample ASP page 8-8

New(CRMTargetListField) 8-104

NewLine 8-31

newproduct 9-9

next 9-6

Next() 8-86

nextqueryrecord 9-7

NextRecord() 8-86, 8-90

NextRow() 6-33

O

Objects

web services 9-5

OnChangeScript 3-10, 8-51

opportunity 9-9

opportunityitem 9-9

OrderBy 8-94

OrderByFields 8-101

orderitem 9-9

orders 9-9

Index -x Sage CRM

Index

Organizational chart

example 7-6

OrgTree

example 7-6

OrgTree(Mode, Value) 8-82

P

PadBottom 8-75

Param 6-34

Parameters

advanced customization wizard 5-18

Parent 8-104

Pen 7-14

Pen(Mode, Value) 8-65

PenColor(Color) 8-65

PenWidth(Width) 8-66

person 9-9

phone 9-9

Pie chart effects 7-2

PieShape 8-66

Pipe_Summary 8-85

Pipeline

example 7-11

PipelineStyle(Mode, Value) 8-84

PostInsertRecord

example 5-16

Preview

scripting customizations 6-4

Previous() 8-86

prevURL 8-76

pricing 9-9

pricinglist 9-9

Priority 8-13

productfamily 9-9

ProperCase 8-58

Properties 8-104

Q

query 9-5

queryentity 9-6

queryid 9-6

queryidnodate 9-6

queryrecord 9-7

QueryResultsToFile 6-34

Quick Reference Table 8-3

quoteitem 9-9

quotes 9-9

R

ReadOnly 8-52

Recipients 8-14

RecordCount 8-88, 8-94

recordfield 9-8

RecordID 8-95

Recording customizations 6-1, 6-2

RecordLock 8-90

Rectangle(X1,Y1,X2,Y2) 8-66

RefreshMetaData(Family) 8-21

RemoveLookup 8-44

Required 8-52

Resize(Width, Height) 8-66

Restricting

access to button groups 4-9

access to tab 4-26

Restrictor 8-54

Retrieve() 8-100

Developer Guide Index – xi

Index

Rotate(Number) 8-67

RoundRect(X1,Y1,X2,Y2,X3,Y3) 8-67

RowsPerScreen 8-76

Runblock

display a list using 4-5

display a screen 4-7, 4-7

RunSQL 6-35

S

Sage CRM

template 11-16

Sample ASP pages 8-7

Save() 8-100

Save(Name, Path) 8-10

SaveAs(Name, Path) 8-10

SaveAsGIF(text) 8-69

SaveAsGifs 8-67

SaveAsJPG(text) 8-67

SaveChanges() 8-91, 8-91

Saving

component 6-7

Screen

adding new data entry 5-7

creating 4-5

creating object 5-7

display using ASP page 4-7

display using runblock 4-7, 4-7

displaying 4-6

Script parameters 6-13

Scripting

client-side 3-7

examples (component manager) 6-36

in CRM interface 3-10

multi-stage customizations 6-5

workflows 6-6

Scripting customizations 6-1, 6-4

Scripts

modifying component manager 6-11

scrmGetGadgetProperty 4-17

scrmGetSageCRMOwner 4-18

scrmPublishEvent 4-17

scrmRegisterEvent 4-17

scrmSaveGadgetProperties 4-18

scrmSetGadgetProperty 4-18

ScrollSpeed 8-78

SData 10-1

authentication 10-3

enabling 10-2

introduction 10-1

overview 10-1

prerequisites 10-2

urls 10-3

SearchAndReplaceCustomFile 6-35

SearchAndReplaceInDir 6-35

SearchAndReplaceInFile 6-35

Security 2-5

application level 2-5

database level 2-6

server level 2-5

Selected 8-85

SelectSql 8-76

SelectSql() 8-87

Send() 8-12

SenderAddress 8-14

SenderName 8-14

Server level security 2-5

Index -xii Sage CRM

Index

SetContext(EntityName, EntityID) 8-21

SetWorkflowInfo 8-92

ShowHeading 8-72

ShowLegend(true/false) 8-34

ShowNewWorkflowButtons 8-42

sample ASP page 8-9

ShowSavedSearch 8-57

ShowSelectAsGif 8-72

ShowValidationErrors 8-31

ShowWorkflowButtons 8-42

sample ASP page 8-8

Size 8-53

SQL 2-8, 8-89

SQLText=Text 8-35

Starting component manager 6-3

Stopping component manager 6-3

Style 7-15

Stylename(Style) 8-34

StyleSheet 8-78

Subject 8-13

Systemmenus

modifying 4-20

T

Tab

actions 4-27

creating invoices 5-6

creating to display a list 5-4

linking to ASP page 4-25

restrict access to 4-26

Tab group

creating new 4-24

Table

create new connection 5-4

creating 5-1

Table level script

creating 5-14

detached 5-14

functions 5-12

introduction 5-12

Table level scripting 3-12

TableExists 6-35

Tabs 4-24

TargetListID 8-100

TargetLists 8-27

Template

creating a project 11-16

CRM basic 11-16

CRM entity 11-17

TextOut 8-68

TextOutCenter 8-68

Title 8-31

Translate 8-59

Triggers 2-8

Troubleshooting

.NET installation 11-9

U

Uninstalling

.NET SDK 11-10

uom 9-9

uomfamily 9-9

update 9-6

updaterecord 9-7

Developer Guide Index – xiii

Index

UpdateRecord

example 5-15, 5-16

Url(Action) 8-26

User setup

web services 9-2

users 9-9

Using

.NET application extensions 11-2

V

Validate() 8-28

ValidateScript 3-10, 8-53

VerticalMaximum 8-78

VerticalMinimum 8-78

Viewing

button groups 4-9

ViewName 8-32, 8-101

VisitorInfo 8-99

vSpace 8-69

W

Web architecture 2-1

Web Services 9-1

Add Resource 9-14

AlterColumnWidth 9-14

configuration 9-3

Create 9-14

Delete 9-14

functions 9-5

Logon and Logoff 9-14

Metadata 9-14

objects 9-5

QueryEntity 9-14

QueryIdNoDate 9-14

SelectionLists 9-14

SID Grabber 9-14

SID Key 9-15

Update 9-15

user setup 9-2

Version 9-15

WhereClause 8-102

Width 7-15, 8-32

Workflow

scripting 6-6

WorkflowTable 8-42

sample ASP page 8-9

WSDL file 9-4

X

XLProp=text 8-35

Xprop=text 8-35

Y

Yprop=text 8-36

Index -xiv Sage CRM

CRMDocument Version Code: DEV-MAN-ENG-710-1.0

	Chapter 1: Introduction
	Chapter 2: Overview
	Web Architecture
	Extensibility Architecture
	.NET Architecture
	.NET vs Classic ASP
	Security
	Application Level Security
	Server Level Security
	Database Level Security

	Customization Overview
	Extending CRM with Custom ASP Pages
	Overview of Customizable Areas

	Database Overview
	CRM Entities
	Metadata
	Using SQL and Triggers

	Chapter 3: Getting Started
	Building an ASP Page
	Integrating the ASP Page Into CRM
	Creating Custom Queries
	Understanding Context and the GetContextInfo Method
	Client-Side Scripting with JavaScript and DOM
	Accessing User Information
	Scripting in the CRM Interface
	Field Level Scripting
	Table Level Scripting

	Chapter 4: Customization Basics
	CRM Blocks Overview
	Block Naming and Custom Blocks

	Adding Help to Custom Pages
	Step 1: Create a Custom Help Page
	Step 2: Add a Help Button to your Custom Page
	Limitations

	Lists
	How to Create a List
	How to Display a List
	Display a List Using an ASP Page
	Display a List using Runblock and the List Name

	Screens
	How to Create a Screen
	How to Display a Screen
	Display a Screen Using Runblock and Screen Name
	Display a screen using Runblock with a Custom Block
	Display a screen with an ASP page

	Buttons
	Creating Button Groups
	Adding Buttons to Button Groups
	Viewing Button Groups
	Restricting Access to Button Groups

	CRM Classic Dashboard
	Customizing The Classic Dashboard
	Adding a List Block To The Classic Dashboard
	Adding a Content Block To The Classic Dashboard
	Adding a Chart To The Classic Dashboard

	CRM Interactive Dashboard
	Customizing the Interactive Dashboard
	Example: Adding a Content Block to the Interactive Dashboard using the Conten...
	Example: Adding a Content Block To The Interactive Dashboard based on an ASP ...
	Adding a Third-party gadget to the Interactive Dashboard
	scrmPublishEvent
	scrmRegisterEvent
	scrmGetGadgetProperty
	scrmSetGadgetProperty
	scrmSaveGadgetProperties
	scrmGetSageCRMOwner

	Blocks
	Creating a New Block
	Customizing a Block
	Displaying a Block

	System Menus
	Modifying System Menus
	Creating a Main Menu Button
	Creating an Admin Menu Button
	Creating an External Link on the Main Menu

	Tabs
	Creating a New Tab Group
	Editing the Main Menu Tab Group
	Adding a Tab that Links to an ASP Page
	Restricting Access to the Tab
	Tab Actions

	Chapter 5: Database Customization
	Introduction to Database Customization
	Creating a New Table
	Creating a New Database Connection
	Creating a New Table Connection
	Example: Creating a Tab to Display a List of Invoices
	Example: Displaying an Individual Invoice from a List
	Example: Adding New Data Entry and Maintenance Screens
	Table and Entity Scripts and Functions
	Creating a Table Level Script
	Detached Table Level Scripts
	Creating an Entity Level Script
	Example: UpdateRecord in an Entity Level Script
	Example: InsertRecord
	Example: PostInsertRecord
	Example: UpdateRecord
	Example: DeleteRecord

	Advanced Customization Wizard
	Creating a New Main Entity
	Advanced Customization Wizard Parameters
	Enabling Company and Person Deduplication
	Custom Files and Metadata
	Making Custom Entities Available for Reassignment
	Customizing a New Main Entity
	Advanced Customization Wizard Example

	Chapter 6: Component Manager
	Introduction to Component Manager
	Recording
	Scripting
	Installing
	What Types of Customizations can be Recorded?

	Recording Customizations
	The Component Details Screen
	Starting Component Manager
	Stopping Component Manager
	Adding Customizations to an Existing Component

	Changing the Current Component
	Scripting Customizations
	Previewing Changes
	Scripting Changes

	Scripting Multi-Stage Customizations
	Scripting Workflows
	Saving a Component
	Installing a Component
	Component Manager Log File
	Advanced Component Options
	How to Generate a Component Script using Advanced Component Options
	How to Create a New Component Using Advanced Component Options

	Modifying Component Manager Scripts
	Error Handling
	Referential Integrity
	Script Parameters
	Phone and E-mail Changes
	Component Manager Methods
	Component Manager Scripting Examples

	Chapter 7: Graphics and Charts
	Introduction
	Charts Overview
	Fusions Charts System Parameters
	Pie Chart Only Effects
	Special Effects For Charts
	Using External Data for Charts
	Chart Examples
	Example: Adding a New Chart
	Example: Organization Chart

	Graphics Overview
	Graphics Formats
	Graphics Performance Tips
	External Images
	Graphics Examples
	Example: Adding a New Graphic
	Example: Pipeline

	Graphic Effects Basics
	Change Image Color
	Clear An Image
	Display Errors
	Drawing Functions
	Merging
	Special Effects

	Animation
	Adding Frames
	Delay
	Loops
	ASP Example

	Chapter 8: ASP Object Reference
	Introduction to the ASP Object Reference
	Quick Reference Table
	Examples
	Sample CRMGridColBlock ASP page
	Sample CRMListBlock ASP page
	Using the New Workflow Properties in an ASP page

	AddressList Object
	Methods
	Properties

	Attachment Object
	Methods
	Properties

	AttachmentList Object
	Properties

	Email Object
	Methods
	Properties

	MailAddress Object
	Properties

	MsgHandler Object
	Methods
	Properties

	CRM Object
	Methods
	Properties

	CRMBase Object
	Methods
	Properties

	CRMBlock Object
	Methods
	Properties

	CRMChartGraphicBlock Object
	Methods
	Properties

	CRMContainerBlock Object
	Methods
	Properties

	CRMContentBlock Object
	Properties

	CRMEntryBlock Object
	Methods
	Properties

	CRMEntryGroupBlock Object
	Methods
	Properties

	CRMFileBlock Object
	Properties

	CRMGraphicBlock Object
	Methods
	Properties

	CRMGridColBlock Object
	Properties

	CRMListBlock Object
	Methods
	Properties

	CRMMarqueeBlock Object
	Properties

	CRMMessageBlock Object
	Properties

	CRMOrgGraphicBlock Object
	Methods

	CRMPipelineGraphicBlock Object
	Methods
	Properties

	CRMQuery Object
	Methods
	Properties

	CRMRecord Object
	Methods
	Properties

	CRMSelfService Object
	Self Service Method and Property Differences
	Note on Instantiating the CRMSelfService Object
	Methods
	Properties

	CRMTargetListField Object
	Properties

	CRMTargetLists Object
	Methods
	Properties
	Example: Creating and Saving a Target List
	Example: Retrieving a Target List

	CRMTargetListFields Object
	Methods
	Properties

	Chapter 9: Web Services
	Introduction to Web Services
	Setting Up CRM Web Services
	Objects and Functions Overview
	List of Web Services Functions
	List of Web Services Objects
	The CRM RecordType Object
	Selection Fields in Web Services
	Introduction to Web Services Examples
	Sample SOAP Requests

	Chapter 10: SData Read-only
	Introduction to SData
	Overview of SData within Sage CRM
	SData Prerequisites
	Switching on SData
	Constructing SData URLs
	SData URL Examples

	SData Authentication

	Chapter 11: .NET
	Extending Sage CRM With .NET
	Sage CRM .NET API and ASP.NET
	Programming Languages
	Component Manager
	Connection Pool

	Using .NET Application Extensions
	The CustomDotNet Folder
	Changing the Build Location of the DLL
	Copying the DLL file to the CustomDotNet Folder
	Calling the .NET Application Extension
	Calling the .NET Application Extension From Tabs/Menus
	Calling the .NET Application Extension From List Block Hyperlinks
	Calling the .NET Application Extension From Within Another Custom .NET Applic...
	Calling the .NET Application Extension From ASP Pages

	.NET API Debugging
	Method 1: Change IIS Security
	Method 2: Use COM+
	Troubleshooting

	.NET API Class Library Documentation
	Sage Namespace
	Sage.CRM.WebObject Namespace
	Sage.CRM.Controls Namespace
	Sage.CRM.Data Namespace
	Sage.CRM.Utils Namespace
	Sage.CRM.Blocks Namespace
	Sage.CRM.HTML Namespace
	Sage.CRM.UI Namespace

	Installing the .NET SDK
	Pre-Installation Checklist
	Installing the SDK and .NET Templates

	Installation Troubleshooting
	Manually registering the DLL
	Manual Installation of the CRM Visual Studio .NET Templates

	Uninstalling the .NET SDK
	.NET Examples
	Creating a Simple Sage CRM Interface
	Creating a More Complex CRM Interface
	Creating a Project Based on a Sage CRM Template
	CRM Basic Template
	CRM Entity Template

	Index

